1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
use event_listener::Event;

use crate::Mutex;

/// A counter to synchronize multiple tasks at the same time.
#[derive(Debug)]
pub struct Barrier {
    n: usize,
    state: Mutex<State>,
    event: Event,
}

#[derive(Debug)]
struct State {
    count: usize,
    generation_id: u64,
}

impl Barrier {
    /// Creates a barrier that can block the given number of tasks.
    ///
    /// A barrier will block `n`-1 tasks which call [`wait()`] and then wake up all tasks
    /// at once when the `n`th task calls [`wait()`].
    ///
    /// [`wait()`]: `Barrier::wait()`
    ///
    /// # Examples
    ///
    /// ```
    /// use async_lock::Barrier;
    ///
    /// let barrier = Barrier::new(5);
    /// ```
    pub const fn new(n: usize) -> Barrier {
        Barrier {
            n,
            state: Mutex::new(State {
                count: 0,
                generation_id: 0,
            }),
            event: Event::new(),
        }
    }

    /// Blocks the current task until all tasks reach this point.
    ///
    /// Barriers are reusable after all tasks have synchronized, and can be used continuously.
    ///
    /// Returns a [`BarrierWaitResult`] indicating whether this task is the "leader", meaning the
    /// last task to call this method.
    ///
    /// # Examples
    ///
    /// ```
    /// use async_lock::Barrier;
    /// use futures_lite::future;
    /// use std::sync::Arc;
    /// use std::thread;
    ///
    /// let barrier = Arc::new(Barrier::new(5));
    ///
    /// for _ in 0..5 {
    ///     let b = barrier.clone();
    ///     thread::spawn(move || {
    ///         future::block_on(async {
    ///             // The same messages will be printed together.
    ///             // There will NOT be interleaving of "before" and "after".
    ///             println!("before wait");
    ///             b.wait().await;
    ///             println!("after wait");
    ///         });
    ///     });
    /// }
    /// ```
    pub async fn wait(&self) -> BarrierWaitResult {
        let mut state = self.state.lock().await;
        let local_gen = state.generation_id;
        state.count += 1;

        if state.count < self.n {
            while local_gen == state.generation_id && state.count < self.n {
                let listener = self.event.listen();
                drop(state);
                listener.await;
                state = self.state.lock().await;
            }
            BarrierWaitResult { is_leader: false }
        } else {
            state.count = 0;
            state.generation_id = state.generation_id.wrapping_add(1);
            self.event.notify(std::usize::MAX);
            BarrierWaitResult { is_leader: true }
        }
    }
}

/// Returned by [`Barrier::wait()`] when all tasks have called it.
///
/// # Examples
///
/// ```
/// # futures_lite::future::block_on(async {
/// use async_lock::Barrier;
///
/// let barrier = Barrier::new(1);
/// let barrier_wait_result = barrier.wait().await;
/// # });
/// ```
#[derive(Debug, Clone)]
pub struct BarrierWaitResult {
    is_leader: bool,
}

impl BarrierWaitResult {
    /// Returns `true` if this task was the last to call to [`Barrier::wait()`].
    ///
    /// # Examples
    ///
    /// ```
    /// # futures_lite::future::block_on(async {
    /// use async_lock::Barrier;
    /// use futures_lite::future;
    ///
    /// let barrier = Barrier::new(2);
    /// let (a, b) = future::zip(barrier.wait(), barrier.wait()).await;
    /// assert_eq!(a.is_leader(), false);
    /// assert_eq!(b.is_leader(), true);
    /// # });
    /// ```
    pub fn is_leader(&self) -> bool {
        self.is_leader
    }
}