1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631
use std::convert::TryFrom;
use std::io;
use std::net::{Ipv4Addr, Ipv6Addr, SocketAddr};
#[cfg(unix)]
use std::os::unix::io::{AsRawFd, RawFd};
#[cfg(windows)]
use std::os::windows::io::{AsRawSocket, RawSocket};
use std::sync::Arc;
use async_io::Async;
use crate::addr::AsyncToSocketAddrs;
/// A UDP socket.
///
/// After creating a [`UdpSocket`] by [`bind`][`UdpSocket::bind()`]ing it to a socket address, data
/// can be [sent to] and [received from] any other socket address.
///
/// Cloning a [`UdpSocket`] creates another handle to the same socket. The socket will be closed
/// when all handles to it are dropped.
///
/// Although UDP is a connectionless protocol, this implementation provides an interface to set an
/// address where data should be sent and received from. After setting a remote address with
/// [`connect()`][`UdpSocket::connect()`], data can be sent to and received from that address with
/// [`send()`][`UdpSocket::send()`] and [`recv()`][`UdpSocket::recv()`].
///
/// As stated in the User Datagram Protocol's specification in [IETF RFC 768], UDP is an unordered,
/// unreliable protocol. Refer to [`TcpListener`][`super::TcpListener`] and
/// [`TcpStream`][`super::TcpStream`] for TCP primitives.
///
/// [received from]: UdpSocket::recv_from()
/// [sent to]: UdpSocket::send_to()
/// [IETF RFC 768]: https://tools.ietf.org/html/rfc768
///
/// # Examples
///
/// ```no_run
/// use async_net::UdpSocket;
///
/// # futures_lite::future::block_on(async {
/// let socket = UdpSocket::bind("127.0.0.1:8080").await?;
/// let mut buf = vec![0u8; 20];
///
/// loop {
/// // Receive a single datagram message.
/// // If `buf` is too small to hold the entire message, it will be cut off.
/// let (n, addr) = socket.recv_from(&mut buf).await?;
///
/// // Send the message back to the same address that has sent it.
/// socket.send_to(&buf[..n], &addr).await?;
/// }
/// # std::io::Result::Ok(()) });
/// ```
#[derive(Clone, Debug)]
pub struct UdpSocket {
inner: Arc<Async<std::net::UdpSocket>>,
}
impl UdpSocket {
fn new(inner: Arc<Async<std::net::UdpSocket>>) -> UdpSocket {
UdpSocket { inner }
}
/// Creates a new [`UdpSocket`] bound to the given address.
///
/// Binding with a port number of 0 will request that the operating system assigns an available
/// port to this socket. The assigned port can be queried via the
/// [`local_addr()`][`UdpSocket::local_addr()`] method.
///
/// If `addr` yields multiple addresses, binding will be attempted with each of the addresses
/// until one succeeds and returns the socket. If none of the addresses succeed in creating a
/// socket, the error from the last attempt is returned.
///
/// # Examples
///
/// Create a UDP socket bound to `127.0.0.1:3400`:
///
/// ```no_run
/// use async_net::UdpSocket;
///
/// # futures_lite::future::block_on(async {
/// let socket = UdpSocket::bind("127.0.0.1:3400").await?;
/// # std::io::Result::Ok(()) });
/// ```
///
/// Create a UDP socket bound to `127.0.0.1:3400`. If that address is unavailable, then try
/// binding to `127.0.0.1:3401`:
///
/// ```no_run
/// use async_net::{SocketAddr, UdpSocket};
///
/// # futures_lite::future::block_on(async {
/// let addrs = [
/// SocketAddr::from(([127, 0, 0, 1], 3400)),
/// SocketAddr::from(([127, 0, 0, 1], 3401)),
/// ];
/// let socket = UdpSocket::bind(&addrs[..]).await?;
/// # std::io::Result::Ok(()) });
/// ```
pub async fn bind<A: AsyncToSocketAddrs>(addr: A) -> io::Result<UdpSocket> {
let mut last_err = None;
for addr in addr.to_socket_addrs().await? {
match Async::<std::net::UdpSocket>::bind(addr) {
Ok(socket) => return Ok(UdpSocket::new(Arc::new(socket))),
Err(err) => last_err = Some(err),
}
}
Err(last_err.unwrap_or_else(|| {
io::Error::new(
io::ErrorKind::InvalidInput,
"could not bind to any of the addresses",
)
}))
}
/// Returns the local address this socket is bound to.
///
/// This can be useful, for example, when binding to port 0 to figure out which port was
/// actually bound.
///
/// # Examples
///
/// Bind to port 0 and then see which port was assigned by the operating system:
///
/// ```no_run
/// use async_net::{SocketAddr, UdpSocket};
///
/// # futures_lite::future::block_on(async {
/// let socket = UdpSocket::bind("127.0.0.1:0").await?;
/// println!("Bound to {}", socket.local_addr()?);
/// # std::io::Result::Ok(()) });
/// ```
pub fn local_addr(&self) -> io::Result<SocketAddr> {
self.inner.get_ref().local_addr()
}
/// Returns the remote address this socket is connected to.
///
/// # Examples
///
/// ```no_run
/// use async_net::UdpSocket;
///
/// # futures_lite::future::block_on(async {
/// let socket = UdpSocket::bind("127.0.0.1:34254").await?;
/// socket.connect("192.168.0.1:41203").await?;
/// println!("Connected to {}", socket.peer_addr()?);
/// # std::io::Result::Ok(()) });
/// ```
pub fn peer_addr(&self) -> io::Result<SocketAddr> {
self.inner.get_ref().peer_addr()
}
/// Connects the UDP socket to an address.
///
/// When connected, methods [`send()`][`UdpSocket::send()`] and [`recv()`][`UdpSocket::recv()`]
/// will use the specified address for sending and receiving messages. Additionally, a filter
/// will be applied to [`recv_from()`][`UdpSocket::recv_from()`] so that it only receives
/// messages from that same address.
///
/// If `addr` yields multiple addresses, connecting will be attempted with each of the
/// addresses until the operating system accepts one. If none of the addresses are accepted,
/// the error from the last attempt is returned.
///
/// # Examples
///
/// ```no_run
/// use async_net::UdpSocket;
///
/// # futures_lite::future::block_on(async {
/// let socket = UdpSocket::bind("127.0.0.1:3400").await?;
/// socket.connect("127.0.0.1:8080").await?;
/// # std::io::Result::Ok(()) });
/// ```
pub async fn connect<A: AsyncToSocketAddrs>(&self, addr: A) -> io::Result<()> {
let mut last_err = None;
for addr in addr.to_socket_addrs().await? {
match self.inner.get_ref().connect(addr) {
Ok(()) => return Ok(()),
Err(err) => last_err = Some(err),
}
}
Err(last_err.unwrap_or_else(|| {
io::Error::new(
io::ErrorKind::InvalidInput,
"could not connect to any of the addresses",
)
}))
}
/// Receives a single datagram message.
///
/// On success, returns the number of bytes received and the address message came from.
///
/// This method must be called with a valid byte buffer of sufficient size to hold a message.
/// If the received message is too long to fit into the buffer, it may be truncated.
///
/// # Examples
///
/// ```no_run
/// use async_net::UdpSocket;
///
/// # futures_lite::future::block_on(async {
/// let socket = UdpSocket::bind("127.0.0.1:34254").await?;
///
/// let mut buf = vec![0u8; 1024];
/// let (n, addr) = socket.recv_from(&mut buf).await?;
/// println!("Received {} bytes from {}", n, addr);
/// # std::io::Result::Ok(()) });
/// ```
pub async fn recv_from(&self, buf: &mut [u8]) -> io::Result<(usize, SocketAddr)> {
self.inner.recv_from(buf).await
}
/// Receives a single datagram message without removing it from the queue.
///
/// On success, returns the number of bytes peeked and the address message came from.
///
/// This method must be called with a valid byte buffer of sufficient size to hold a message.
/// If the received message is too long to fit into the buffer, it may be truncated.
///
/// Successive calls return the same message. This is accomplished by passing `MSG_PEEK` as a
/// flag to the underlying `recvfrom` system call.
///
/// # Examples
///
/// ```no_run
/// use async_net::UdpSocket;
///
/// # futures_lite::future::block_on(async {
/// let socket = UdpSocket::bind("127.0.0.1:34254").await?;
///
/// let mut buf = vec![0u8; 1024];
/// let (n, addr) = socket.peek_from(&mut buf).await?;
/// println!("Peeked {} bytes from {}", n, addr);
/// # std::io::Result::Ok(()) });
/// ```
pub async fn peek_from(&self, buf: &mut [u8]) -> io::Result<(usize, SocketAddr)> {
self.inner.get_ref().peek_from(buf)
}
/// Sends data to the given address.
///
/// On success, returns the number of bytes sent.
///
/// If `addr` yields multiple addresses, the message will only be sent to the first address.
///
/// # Examples
///
/// ```no_run
/// use async_net::UdpSocket;
///
/// # futures_lite::future::block_on(async {
/// let socket = UdpSocket::bind("127.0.0.1:34254").await?;
/// socket.send_to(b"hello", "127.0.0.1:4242").await?;
/// # std::io::Result::Ok(()) });
/// ```
pub async fn send_to<A: AsyncToSocketAddrs>(&self, buf: &[u8], addr: A) -> io::Result<usize> {
let addr = match addr.to_socket_addrs().await?.next() {
Some(addr) => addr,
None => {
return Err(io::Error::new(
io::ErrorKind::InvalidInput,
"no addresses to send data to",
))
}
};
self.inner.send_to(buf, addr).await
}
/// Receives a single datagram message from the connected address.
///
/// On success, returns the number of bytes received.
///
/// This method must be called with a valid byte buffer of sufficient size to hold a message.
/// If the received message is too long to fit into the buffer, it may be truncated.
///
/// The [`connect()`][`UdpSocket::connect()`] method connects this socket to an address. This
/// method will fail if the socket is not connected.
///
/// # Examples
///
/// ```no_run
/// use async_net::UdpSocket;
///
/// # futures_lite::future::block_on(async {
/// let socket = UdpSocket::bind("127.0.0.1:34254").await?;
/// socket.connect("127.0.0.1:8080").await?;
///
/// let mut buf = vec![0u8; 1024];
/// let n = socket.recv(&mut buf).await?;
/// println!("Received {} bytes", n);
/// # std::io::Result::Ok(()) });
/// ```
pub async fn recv(&self, buf: &mut [u8]) -> io::Result<usize> {
self.inner.recv(buf).await
}
/// Receives a single datagram from the connected address without removing it from the queue.
///
/// On success, returns the number of bytes peeked.
///
/// This method must be called with a valid byte buffer of sufficient size to hold a message.
/// If the received message is too long to fit into the buffer, it may be truncated.
///
/// Successive calls return the same message. This is accomplished by passing `MSG_PEEK` as a
/// flag to the underlying `recv` system call.
///
/// The [`connect()`][`UdpSocket::connect()`] method connects this socket to an address. This
/// method will fail if the socket is not connected.
///
/// # Examples
///
/// ```no_run
/// use async_net::UdpSocket;
///
/// # futures_lite::future::block_on(async {
/// let socket = UdpSocket::bind("127.0.0.1:34254").await?;
/// socket.connect("127.0.0.1:8080").await?;
///
/// let mut buf = vec![0u8; 1024];
/// let n = socket.peek(&mut buf).await?;
/// println!("Peeked {} bytes", n);
/// # std::io::Result::Ok(()) });
/// ```
pub async fn peek(&self, buf: &mut [u8]) -> io::Result<usize> {
self.inner.peek(buf).await
}
/// Sends data to the connected address.
///
/// The [`connect()`][`UdpSocket::connect()`] method connects this socket to an address. This
/// method will fail if the socket is not connected.
///
/// # Examples
///
/// ```no_run
/// use async_net::UdpSocket;
///
/// # futures_lite::future::block_on(async {
/// let socket = UdpSocket::bind("127.0.0.1:34254").await?;
/// socket.connect("127.0.0.1:8080").await?;
/// socket.send(b"hello").await?;
/// # std::io::Result::Ok(()) });
/// ```
pub async fn send(&self, buf: &[u8]) -> io::Result<usize> {
self.inner.send(buf).await
}
/// Gets the value of the `SO_BROADCAST` option for this socket.
///
/// If set to `true`, this socket is allowed to send packets to a broadcast address.
///
/// # Examples
///
/// ```no_run
/// use async_net::UdpSocket;
///
/// # futures_lite::future::block_on(async {
/// let socket = UdpSocket::bind("127.0.0.1:34254").await?;
/// println!("SO_BROADCAST is set to {}", socket.broadcast()?);
/// # std::io::Result::Ok(()) });
/// ```
pub fn broadcast(&self) -> io::Result<bool> {
self.inner.get_ref().broadcast()
}
/// Sets the value of the `SO_BROADCAST` option for this socket.
///
/// If set to `true`, this socket is allowed to send packets to a broadcast address.
///
/// # Examples
///
/// ```no_run
/// use async_net::UdpSocket;
///
/// # futures_lite::future::block_on(async {
/// let socket = UdpSocket::bind("127.0.0.1:34254").await?;
/// socket.set_broadcast(true)?;
/// # std::io::Result::Ok(()) });
/// ```
pub fn set_broadcast(&self, broadcast: bool) -> io::Result<()> {
self.inner.get_ref().set_broadcast(broadcast)
}
/// Gets the value of the `IP_MULTICAST_LOOP` option for this socket.
///
/// If set to `true`, multicast packets will be looped back to the local socket.
///
/// Note that this option may not have any affect on IPv6 sockets.
///
/// # Examples
///
/// ```no_run
/// use async_net::UdpSocket;
///
/// # futures_lite::future::block_on(async {
/// let socket = UdpSocket::bind("127.0.0.1:34254").await?;
/// println!("IP_MULTICAST_LOOP is set to {}", socket.multicast_loop_v4()?);
/// # std::io::Result::Ok(()) });
/// ```
pub fn multicast_loop_v4(&self) -> io::Result<bool> {
self.inner.get_ref().multicast_loop_v4()
}
/// Sets the value of the `IP_MULTICAST_LOOP` option for this socket.
///
/// If set to `true`, multicast packets will be looped back to the local socket.
///
/// Note that this option may not have any affect on IPv6 sockets.
///
/// # Examples
///
/// ```no_run
/// use async_net::UdpSocket;
///
/// # futures_lite::future::block_on(async {
/// let socket = UdpSocket::bind("127.0.0.1:34254").await?;
/// socket.set_multicast_loop_v4(true)?;
/// # std::io::Result::Ok(()) });
/// ```
pub fn set_multicast_loop_v4(&self, multicast_loop_v4: bool) -> io::Result<()> {
self.inner
.get_ref()
.set_multicast_loop_v4(multicast_loop_v4)
}
/// Gets the value of the `IP_MULTICAST_TTL` option for this socket.
///
/// Indicates the time-to-live value of outgoing multicast packets for this socket. The default
/// value is 1, which means that multicast packets don't leave the local network unless
/// explicitly requested.
///
/// Note that this option may not have any effect on IPv6 sockets.
///
/// # Examples
///
/// ```no_run
/// use async_net::UdpSocket;
///
/// # futures_lite::future::block_on(async {
/// let socket = UdpSocket::bind("127.0.0.1:34254").await?;
/// println!("IP_MULTICAST_TTL is set to {}", socket.multicast_loop_v4()?);
/// # std::io::Result::Ok(()) });
/// ```
pub fn multicast_ttl_v4(&self) -> io::Result<u32> {
self.inner.get_ref().multicast_ttl_v4()
}
/// Sets the value of the `IP_MULTICAST_TTL` option for this socket.
///
/// Indicates the time-to-live value of outgoing multicast packets for this socket. The default
/// value is 1, which means that multicast packets don't leave the local network unless
/// explicitly requested.
///
/// Note that this option may not have any effect on IPv6 sockets.
///
/// # Examples
///
/// ```no_run
/// use async_net::UdpSocket;
///
/// # futures_lite::future::block_on(async {
/// let socket = UdpSocket::bind("127.0.0.1:34254").await?;
/// socket.set_multicast_ttl_v4(10)?;
/// # std::io::Result::Ok(()) });
/// ```
pub fn set_multicast_ttl_v4(&self, ttl: u32) -> io::Result<()> {
self.inner.get_ref().set_multicast_ttl_v4(ttl)
}
/// Gets the value of the `IPV6_MULTICAST_LOOP` option for this socket.
///
/// Controls whether this socket sees the multicast packets it sends itself.
///
/// Note that this option may not have any effect on IPv4 sockets.
///
/// # Examples
///
/// ```no_run
/// use async_net::UdpSocket;
///
/// # futures_lite::future::block_on(async {
/// let socket = UdpSocket::bind("127.0.0.1:34254").await?;
/// println!("IPV6_MULTICAST_LOOP is set to {}", socket.multicast_loop_v6()?);
/// # std::io::Result::Ok(()) });
/// ```
pub fn multicast_loop_v6(&self) -> io::Result<bool> {
self.inner.get_ref().multicast_loop_v6()
}
/// Sets the value of the `IPV6_MULTICAST_LOOP` option for this socket.
///
/// Controls whether this socket sees the multicast packets it sends itself.
///
/// Note that this option may not have any effect on IPv4 sockets.
///
/// # Examples
///
/// ```no_run
/// use async_net::UdpSocket;
///
/// # futures_lite::future::block_on(async {
/// let socket = UdpSocket::bind("127.0.0.1:34254").await?;
/// socket.set_multicast_loop_v6(true)?;
/// # std::io::Result::Ok(()) });
/// ```
pub fn set_multicast_loop_v6(&self, multicast_loop_v6: bool) -> io::Result<()> {
self.inner
.get_ref()
.set_multicast_loop_v6(multicast_loop_v6)
}
/// Gets the value of the `IP_TTL` option for this socket.
///
/// This option configures the time-to-live field that is used in every packet sent from this
/// socket.
///
/// # Examples
///
/// ```no_run
/// use async_net::UdpSocket;
///
/// # futures_lite::future::block_on(async {
/// let socket = UdpSocket::bind("127.0.0.1:34254").await?;
/// println!("IP_TTL is set to {}", socket.ttl()?);
/// # std::io::Result::Ok(()) });
/// ```
pub fn ttl(&self) -> io::Result<u32> {
self.inner.get_ref().ttl()
}
/// Sets the value of the `IP_TTL` option for this socket.
///
/// This option configures the time-to-live field that is used in every packet sent from this
/// socket.
///
/// # Examples
///
/// ```no_run
/// use async_net::UdpSocket;
///
/// # futures_lite::future::block_on(async {
/// let socket = UdpSocket::bind("127.0.0.1:34254").await?;
/// socket.set_ttl(100)?;
/// # std::io::Result::Ok(()) });
/// ```
pub fn set_ttl(&self, ttl: u32) -> io::Result<()> {
self.inner.get_ref().set_ttl(ttl)
}
/// Executes an operation of the `IP_ADD_MEMBERSHIP` type.
///
/// This method specifies a new multicast group for this socket to join. Argument `multiaddr`
/// must be a valid multicast address, and `interface` is the address of the local interface
/// with which the system should join the multicast group. If it's equal to `INADDR_ANY` then
/// an appropriate interface is chosen by the system.
pub fn join_multicast_v4(&self, multiaddr: Ipv4Addr, interface: Ipv4Addr) -> io::Result<()> {
self.inner
.get_ref()
.join_multicast_v4(&multiaddr, &interface)
}
/// Executes an operation of the `IP_DROP_MEMBERSHIP` type.
///
/// This method leaves a multicast group. Argument `multiaddr` must be a valid multicast
/// address, and `interface` is the index of the interface to leave.
pub fn leave_multicast_v4(&self, multiaddr: Ipv4Addr, interface: Ipv4Addr) -> io::Result<()> {
self.inner
.get_ref()
.leave_multicast_v4(&multiaddr, &interface)
}
/// Executes an operation of the `IPV6_ADD_MEMBERSHIP` type.
///
/// This method specifies a new multicast group for this socket to join. Argument `multiaddr`
/// must be a valid multicast address, and `interface` is the index of the interface to join
/// (or 0 to indicate any interface).
pub fn join_multicast_v6(&self, multiaddr: &Ipv6Addr, interface: u32) -> io::Result<()> {
self.inner.get_ref().join_multicast_v6(multiaddr, interface)
}
/// Executes an operation of the `IPV6_DROP_MEMBERSHIP` type.
///
/// This method leaves a multicast group. Argument `multiaddr` must be a valid multicast
/// address, and `interface` is the index of the interface to leave.
pub fn leave_multicast_v6(&self, multiaddr: &Ipv6Addr, interface: u32) -> io::Result<()> {
self.inner
.get_ref()
.leave_multicast_v6(multiaddr, interface)
}
}
impl From<Async<std::net::UdpSocket>> for UdpSocket {
fn from(socket: Async<std::net::UdpSocket>) -> UdpSocket {
UdpSocket::new(Arc::new(socket))
}
}
impl TryFrom<std::net::UdpSocket> for UdpSocket {
type Error = io::Error;
fn try_from(socket: std::net::UdpSocket) -> io::Result<UdpSocket> {
Ok(UdpSocket::new(Arc::new(Async::new(socket)?)))
}
}
impl From<UdpSocket> for Arc<Async<std::net::UdpSocket>> {
fn from(val: UdpSocket) -> Self {
val.inner
}
}
#[cfg(unix)]
impl AsRawFd for UdpSocket {
fn as_raw_fd(&self) -> RawFd {
self.inner.as_raw_fd()
}
}
#[cfg(windows)]
impl AsRawSocket for UdpSocket {
fn as_raw_socket(&self) -> RawSocket {
self.inner.as_raw_socket()
}
}