1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
//! A thread pool for isolating blocking I/O in async programs.
//!
//! Sometimes there's no way to avoid blocking I/O. Consider files or stdin, which have weak async
//! support on modern operating systems. While [IOCP], [AIO], and [io_uring] are possible
//! solutions, they're not always available or ideal.
//!
//! Since blocking is not allowed inside futures, we must move blocking I/O onto a special thread
//! pool provided by this crate. The pool dynamically spawns and stops threads depending on the
//! current number of running I/O jobs.
//!
//! Note that there is a limit on the number of active threads. Once that limit is hit, a running
//! job has to finish before others get a chance to run. When a thread is idle, it waits for the
//! next job or shuts down after a certain timeout.
//!
//! The default number of threads (set to 500) can be altered by setting BLOCKING_MAX_THREADS environment
//! variable with value between 1 and 10000.
//!
//! [IOCP]: https://en.wikipedia.org/wiki/Input/output_completion_port
//! [AIO]: http://man7.org/linux/man-pages/man2/io_submit.2.html
//! [io_uring]: https://lwn.net/Articles/776703
//!
//! # Examples
//!
//! Read the contents of a file:
//!
//! ```no_run
//! use blocking::unblock;
//! use std::fs;
//!
//! # futures_lite::future::block_on(async {
//! let contents = unblock(|| fs::read_to_string("file.txt")).await?;
//! println!("{}", contents);
//! # std::io::Result::Ok(()) });
//! ```
//!
//! Read a file and pipe its contents to stdout:
//!
//! ```no_run
//! use blocking::{unblock, Unblock};
//! use futures_lite::io;
//! use std::fs::File;
//!
//! # futures_lite::future::block_on(async {
//! let input = unblock(|| File::open("file.txt")).await?;
//! let input = Unblock::new(input);
//! let mut output = Unblock::new(std::io::stdout());
//!
//! io::copy(input, &mut output).await?;
//! # std::io::Result::Ok(()) });
//! ```
//!
//! Iterate over the contents of a directory:
//!
//! ```no_run
//! use blocking::Unblock;
//! use futures_lite::prelude::*;
//! use std::fs;
//!
//! # futures_lite::future::block_on(async {
//! let mut dir = Unblock::new(fs::read_dir(".")?);
//! while let Some(item) = dir.next().await {
//!     println!("{}", item?.file_name().to_string_lossy());
//! }
//! # std::io::Result::Ok(()) });
//! ```
//!
//! Spawn a process:
//!
//! ```no_run
//! use blocking::unblock;
//! use std::process::Command;
//!
//! # futures_lite::future::block_on(async {
//! let out = unblock(|| Command::new("dir").output()).await?;
//! # std::io::Result::Ok(()) });
//! ```

#![warn(missing_docs, missing_debug_implementations, rust_2018_idioms)]

use std::any::Any;
use std::collections::VecDeque;
use std::env;
use std::fmt;
use std::io::{self, Read, Seek, SeekFrom, Write};
use std::mem;
use std::panic;
use std::pin::Pin;
use std::slice;
use std::sync::atomic::{self, AtomicBool, AtomicUsize, Ordering};
use std::sync::{Arc, Condvar, Mutex, MutexGuard};
use std::task::{Context, Poll};
use std::thread;
use std::time::Duration;

use async_channel::{bounded, Receiver};
use async_task::Runnable;
use atomic_waker::AtomicWaker;
use futures_lite::{future, prelude::*, ready};
use once_cell::sync::Lazy;

#[doc(no_inline)]
pub use async_task::Task;

/// Default value for max threads that Executor can grow to
const DEFAULT_MAX_THREADS: usize = 500;

/// Minimum value for max threads config
const MIN_MAX_THREADS: usize = 1;

/// Maximum value for max threads config
const MAX_MAX_THREADS: usize = 10000;

/// Env variable that allows to override default value for max threads.
const MAX_THREADS_ENV: &str = "BLOCKING_MAX_THREADS";

/// Lazily initialized global executor.
static EXECUTOR: Lazy<Executor> = Lazy::new(|| Executor {
    inner: Mutex::new(Inner {
        idle_count: 0,
        thread_count: 0,
        queue: VecDeque::new(),
    }),
    cvar: Condvar::new(),
    thread_limit: Executor::max_threads(),
});

/// The blocking executor.
struct Executor {
    /// Inner state of the executor.
    inner: Mutex<Inner>,

    /// Used to put idle threads to sleep and wake them up when new work comes in.
    cvar: Condvar,

    /// Maximum number of threads in the pool
    thread_limit: usize,
}

/// Inner state of the blocking executor.
struct Inner {
    /// Number of idle threads in the pool.
    ///
    /// Idle threads are sleeping, waiting to get a task to run.
    idle_count: usize,

    /// Total number of threads in the pool.
    ///
    /// This is the number of idle threads + the number of active threads.
    thread_count: usize,

    /// The queue of blocking tasks.
    queue: VecDeque<Runnable>,
}

impl Executor {
    fn max_threads() -> usize {
        match env::var(MAX_THREADS_ENV) {
            Ok(v) => v
                .parse::<usize>()
                .map(|v| v.max(MIN_MAX_THREADS).min(MAX_MAX_THREADS))
                .unwrap_or(DEFAULT_MAX_THREADS),
            Err(_) => DEFAULT_MAX_THREADS,
        }
    }
    /// Spawns a future onto this executor.
    ///
    /// Returns a [`Task`] handle for the spawned task.
    fn spawn<T: Send + 'static>(future: impl Future<Output = T> + Send + 'static) -> Task<T> {
        let (runnable, task) = async_task::spawn(future, |r| EXECUTOR.schedule(r));
        runnable.schedule();
        task
    }

    /// Runs the main loop on the current thread.
    ///
    /// This function runs blocking tasks until it becomes idle and times out.
    fn main_loop(&'static self) {
        let mut inner = self.inner.lock().unwrap();
        loop {
            // This thread is not idle anymore because it's going to run tasks.
            inner.idle_count -= 1;

            // Run tasks in the queue.
            while let Some(runnable) = inner.queue.pop_front() {
                // We have found a task - grow the pool if needed.
                self.grow_pool(inner);

                // Run the task.
                panic::catch_unwind(|| runnable.run()).ok();

                // Re-lock the inner state and continue.
                inner = self.inner.lock().unwrap();
            }

            // This thread is now becoming idle.
            inner.idle_count += 1;

            // Put the thread to sleep until another task is scheduled.
            let timeout = Duration::from_millis(500);
            let (lock, res) = self.cvar.wait_timeout(inner, timeout).unwrap();
            inner = lock;

            // If there are no tasks after a while, stop this thread.
            if res.timed_out() && inner.queue.is_empty() {
                inner.idle_count -= 1;
                inner.thread_count -= 1;
                break;
            }
        }
    }

    /// Schedules a runnable task for execution.
    fn schedule(&'static self, runnable: Runnable) {
        let mut inner = self.inner.lock().unwrap();
        inner.queue.push_back(runnable);

        // Notify a sleeping thread and spawn more threads if needed.
        self.cvar.notify_one();
        self.grow_pool(inner);
    }

    /// Spawns more blocking threads if the pool is overloaded with work.
    fn grow_pool(&'static self, mut inner: MutexGuard<'static, Inner>) {
        // If runnable tasks greatly outnumber idle threads and there aren't too many threads
        // already, then be aggressive: wake all idle threads and spawn one more thread.
        while inner.queue.len() > inner.idle_count * 5 && inner.thread_count < EXECUTOR.thread_limit
        {
            // The new thread starts in idle state.
            inner.idle_count += 1;
            inner.thread_count += 1;

            // Notify all existing idle threads because we need to hurry up.
            self.cvar.notify_all();

            // Generate a new thread ID.
            static ID: AtomicUsize = AtomicUsize::new(1);
            let id = ID.fetch_add(1, Ordering::Relaxed);

            // Spawn the new thread.
            thread::Builder::new()
                .name(format!("blocking-{}", id))
                .spawn(move || self.main_loop())
                .unwrap();
        }
    }
}

/// Runs blocking code on a thread pool.
///
/// # Examples
///
/// Read the contents of a file:
///
/// ```no_run
/// use blocking::unblock;
/// use std::fs;
///
/// # futures_lite::future::block_on(async {
/// let contents = unblock(|| fs::read_to_string("file.txt")).await?;
/// # std::io::Result::Ok(()) });
/// ```
///
/// Spawn a process:
///
/// ```no_run
/// use blocking::unblock;
/// use std::process::Command;
///
/// # futures_lite::future::block_on(async {
/// let out = unblock(|| Command::new("dir").output()).await?;
/// # std::io::Result::Ok(()) });
/// ```
pub fn unblock<T, F>(f: F) -> Task<T>
where
    F: FnOnce() -> T + Send + 'static,
    T: Send + 'static,
{
    Executor::spawn(async move { f() })
}

/// Runs blocking I/O on a thread pool.
///
/// Blocking I/O must be isolated from async code. This type moves blocking I/O operations onto a
/// special thread pool while exposing a familiar async interface.
///
/// This type implements traits [`Stream`], [`AsyncRead`], [`AsyncWrite`], or [`AsyncSeek`] if the
/// inner type implements [`Iterator`], [`Read`], [`Write`], or [`Seek`], respectively.
///
/// # Caveats
///
/// [`Unblock`] is a low-level primitive, and as such it comes with some caveats.
///
/// For higher-level primitives built on top of [`Unblock`], look into [`async-fs`] or
/// [`async-process`] (on Windows).
///
/// [`async-fs`]: https://github.com/smol-rs/async-fs
/// [`async-process`]: https://github.com/smol-rs/async-process
///
/// [`Unblock`] communicates with I/O operations on the thread pool through a pipe. That means an
/// async read/write operation simply receives/sends some bytes from/into the pipe. When in reading
/// mode, the thread pool reads bytes from the I/O handle and forwards them into the pipe until it
/// becomes full. When in writing mode, the thread pool reads bytes from the pipe and forwards them
/// into the I/O handle.
///
/// Use [`Unblock::with_capacity()`] to configure the capacity of the pipe.
///
/// ### Reading
///
/// If you create an [`Unblock`]`<`[`Stdin`][`std::io::Stdin`]`>`, read some bytes from it,
/// and then drop it, a blocked read operation may keep hanging on the thread pool. The next
/// attempt to read from stdin will lose bytes read by the hanging operation. This is a difficult
/// problem to solve, so make sure you only use a single stdin handle for the duration of the
/// entire program.
///
/// ### Writing
///
/// If writing data through the [`AsyncWrite`] trait, make sure to flush before dropping the
/// [`Unblock`] handle or some buffered data might get lost.
///
/// ### Seeking
///
/// Because of buffering in the pipe, if [`Unblock`] wraps a [`File`][`std::fs::File`], a single
/// read operation may move the file cursor farther than is the span of the operation. In fact,
/// reading just keeps going in the background until the pipe gets full. Keep this mind when
/// using [`AsyncSeek`] with [relative][`SeekFrom::Current`] offsets.
///
/// # Examples
///
/// ```
/// use blocking::Unblock;
/// use futures_lite::prelude::*;
///
/// # futures_lite::future::block_on(async {
/// let mut stdout = Unblock::new(std::io::stdout());
/// stdout.write_all(b"Hello world!").await?;
/// stdout.flush().await?;
/// # std::io::Result::Ok(()) });
/// ```
pub struct Unblock<T> {
    state: State<T>,
    cap: Option<usize>,
}

impl<T> Unblock<T> {
    /// Wraps a blocking I/O handle into the async [`Unblock`] interface.
    ///
    /// # Examples
    ///
    /// ```no_run
    /// use blocking::Unblock;
    ///
    /// let stdin = Unblock::new(std::io::stdin());
    /// ```
    pub fn new(io: T) -> Unblock<T> {
        Unblock {
            state: State::Idle(Some(Box::new(io))),
            cap: None,
        }
    }

    /// Wraps a blocking I/O handle into the async [`Unblock`] interface with a custom buffer
    /// capacity.
    ///
    /// When communicating with the inner [`Stream`]/[`Read`]/[`Write`] type from async code, data
    /// transferred between blocking and async code goes through a buffer of limited capacity. This
    /// constructor configures that capacity.
    ///
    /// The default capacity is:
    ///
    /// * For [`Iterator`] types: 8192 items.
    /// * For [`Read`]/[`Write`] types: 8 MB.
    ///
    /// # Examples
    ///
    /// ```no_run
    /// use blocking::Unblock;
    ///
    /// let stdout = Unblock::with_capacity(64 * 1024, std::io::stdout());
    /// ```
    pub fn with_capacity(cap: usize, io: T) -> Unblock<T> {
        Unblock {
            state: State::Idle(Some(Box::new(io))),
            cap: Some(cap),
        }
    }

    /// Gets a mutable reference to the blocking I/O handle.
    ///
    /// This is an async method because the I/O handle might be on the thread pool and needs to
    /// be moved onto the current thread before we can get a reference to it.
    ///
    /// # Examples
    ///
    /// ```no_run
    /// use blocking::{unblock, Unblock};
    /// use std::fs::File;
    ///
    /// # futures_lite::future::block_on(async {
    /// let file = unblock(|| File::create("file.txt")).await?;
    /// let mut file = Unblock::new(file);
    ///
    /// let metadata = file.get_mut().await.metadata()?;
    /// # std::io::Result::Ok(()) });
    /// ```
    pub async fn get_mut(&mut self) -> &mut T {
        // Wait for the running task to stop and ignore I/O errors if there are any.
        future::poll_fn(|cx| self.poll_stop(cx)).await.ok();

        // Assume idle state and get a reference to the inner value.
        match &mut self.state {
            State::Idle(t) => t.as_mut().expect("inner value was taken out"),
            State::WithMut(..)
            | State::Streaming(..)
            | State::Reading(..)
            | State::Writing(..)
            | State::Seeking(..) => {
                unreachable!("when stopped, the state machine must be in idle state");
            }
        }
    }

    /// Performs a blocking operation on the I/O handle.
    ///
    /// # Examples
    ///
    /// ```no_run
    /// use blocking::{unblock, Unblock};
    /// use std::fs::File;
    ///
    /// # futures_lite::future::block_on(async {
    /// let file = unblock(|| File::create("file.txt")).await?;
    /// let mut file = Unblock::new(file);
    ///
    /// let metadata = file.with_mut(|f| f.metadata()).await?;
    /// # std::io::Result::Ok(()) });
    /// ```
    pub async fn with_mut<R, F>(&mut self, op: F) -> R
    where
        F: FnOnce(&mut T) -> R + Send + 'static,
        R: Send + 'static,
        T: Send + 'static,
    {
        // Wait for the running task to stop and ignore I/O errors if there are any.
        future::poll_fn(|cx| self.poll_stop(cx)).await.ok();

        // Assume idle state and take out the inner value.
        let mut t = match &mut self.state {
            State::Idle(t) => t.take().expect("inner value was taken out"),
            State::WithMut(..)
            | State::Streaming(..)
            | State::Reading(..)
            | State::Writing(..)
            | State::Seeking(..) => {
                unreachable!("when stopped, the state machine must be in idle state");
            }
        };

        let (sender, receiver) = bounded(1);
        let task = Executor::spawn(async move {
            sender.try_send(op(&mut t)).ok();
            t
        });
        self.state = State::WithMut(task);

        receiver
            .recv()
            .await
            .expect("`Unblock::with_mut()` operation has panicked")
    }

    /// Extracts the inner blocking I/O handle.
    ///
    /// This is an async method because the I/O handle might be on the thread pool and needs to
    /// be moved onto the current thread before we can extract it.
    ///
    /// # Examples
    ///
    /// ```no_run
    /// use blocking::{unblock, Unblock};
    /// use futures_lite::prelude::*;
    /// use std::fs::File;
    ///
    /// # futures_lite::future::block_on(async {
    /// let file = unblock(|| File::create("file.txt")).await?;
    /// let file = Unblock::new(file);
    ///
    /// let file = file.into_inner().await;
    /// # std::io::Result::Ok(()) });
    /// ```
    pub async fn into_inner(self) -> T {
        // There's a bug in rustdoc causing it to render `mut self` as `__arg0: Self`, so we just
        // bind `self` to a local mutable variable.
        let mut this = self;

        // Wait for the running task to stop and ignore I/O errors if there are any.
        future::poll_fn(|cx| this.poll_stop(cx)).await.ok();

        // Assume idle state and extract the inner value.
        match &mut this.state {
            State::Idle(t) => *t.take().expect("inner value was taken out"),
            State::WithMut(..)
            | State::Streaming(..)
            | State::Reading(..)
            | State::Writing(..)
            | State::Seeking(..) => {
                unreachable!("when stopped, the state machine must be in idle state");
            }
        }
    }

    /// Waits for the running task to stop.
    ///
    /// On success, the state machine is moved into the idle state.
    fn poll_stop(&mut self, cx: &mut Context<'_>) -> Poll<io::Result<()>> {
        loop {
            match &mut self.state {
                State::Idle(_) => return Poll::Ready(Ok(())),

                State::WithMut(task) => {
                    // Poll the task to wait for it to finish.
                    let io = ready!(Pin::new(task).poll(cx));
                    self.state = State::Idle(Some(io));
                }

                State::Streaming(any, task) => {
                    // Drop the receiver to close the channel. This stops the `send()` operation in
                    // the task, after which the task returns the iterator back.
                    any.take();

                    // Poll the task to retrieve the iterator.
                    let iter = ready!(Pin::new(task).poll(cx));
                    self.state = State::Idle(Some(iter));
                }

                State::Reading(reader, task) => {
                    // Drop the reader to close the pipe. This stops copying inside the task, after
                    // which the task returns the I/O handle back.
                    reader.take();

                    // Poll the task to retrieve the I/O handle.
                    let (res, io) = ready!(Pin::new(task).poll(cx));
                    // Make sure to move into the idle state before reporting errors.
                    self.state = State::Idle(Some(io));
                    res?;
                }

                State::Writing(writer, task) => {
                    // Drop the writer to close the pipe. This stops copying inside the task, after
                    // which the task flushes the I/O handle and
                    writer.take();

                    // Poll the task to retrieve the I/O handle.
                    let (res, io) = ready!(Pin::new(task).poll(cx));
                    // Make sure to move into the idle state before reporting errors.
                    self.state = State::Idle(Some(io));
                    res?;
                }

                State::Seeking(task) => {
                    // Poll the task to wait for it to finish.
                    let (_, res, io) = ready!(Pin::new(task).poll(cx));
                    // Make sure to move into the idle state before reporting errors.
                    self.state = State::Idle(Some(io));
                    res?;
                }
            }
        }
    }
}

impl<T: fmt::Debug> fmt::Debug for Unblock<T> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        struct Closed;
        impl fmt::Debug for Closed {
            fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
                f.write_str("<closed>")
            }
        }

        struct Blocked;
        impl fmt::Debug for Blocked {
            fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
                f.write_str("<blocked>")
            }
        }

        match &self.state {
            State::Idle(None) => f.debug_struct("Unblock").field("io", &Closed).finish(),
            State::Idle(Some(io)) => {
                let io: &T = &*io;
                f.debug_struct("Unblock").field("io", io).finish()
            }
            State::WithMut(..)
            | State::Streaming(..)
            | State::Reading(..)
            | State::Writing(..)
            | State::Seeking(..) => f.debug_struct("Unblock").field("io", &Blocked).finish(),
        }
    }
}

/// Current state of a blocking task.
enum State<T> {
    /// There is no blocking task.
    ///
    /// The inner value is readily available, unless it has already been extracted. The value is
    /// extracted out by [`Unblock::into_inner()`], [`AsyncWrite::poll_close()`], or by awaiting
    /// [`Unblock`].
    Idle(Option<Box<T>>),

    /// A [`Unblock::with_mut()`] closure was spawned and is still running.
    WithMut(Task<Box<T>>),

    /// The inner value is an [`Iterator`] currently iterating in a task.
    ///
    /// The `dyn Any` value here is a `mpsc::Receiver<<T as Iterator>::Item>`.
    Streaming(Option<Box<dyn Any + Send + Sync>>, Task<Box<T>>),

    /// The inner value is a [`Read`] currently reading in a task.
    Reading(Option<Reader>, Task<(io::Result<()>, Box<T>)>),

    /// The inner value is a [`Write`] currently writing in a task.
    Writing(Option<Writer>, Task<(io::Result<()>, Box<T>)>),

    /// The inner value is a [`Seek`] currently seeking in a task.
    Seeking(Task<(SeekFrom, io::Result<u64>, Box<T>)>),
}

impl<T: Iterator + Send + 'static> Stream for Unblock<T>
where
    T::Item: Send + 'static,
{
    type Item = T::Item;

    fn poll_next(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Option<T::Item>> {
        loop {
            match &mut self.state {
                // If not in idle or active streaming state, stop the running task.
                State::WithMut(..)
                | State::Streaming(None, _)
                | State::Reading(..)
                | State::Writing(..)
                | State::Seeking(..) => {
                    // Wait for the running task to stop.
                    ready!(self.poll_stop(cx)).ok();
                }

                // If idle, start a streaming task.
                State::Idle(iter) => {
                    // Take the iterator out to run it on a blocking task.
                    let mut iter = iter.take().expect("inner iterator was taken out");

                    // This channel capacity seems to work well in practice. If it's too low, there
                    // will be too much synchronization between tasks. If too high, memory
                    // consumption increases.
                    let (sender, receiver) = bounded(self.cap.unwrap_or(8 * 1024)); // 8192 items

                    // Spawn a blocking task that runs the iterator and returns it when done.
                    let task = Executor::spawn(async move {
                        for item in &mut iter {
                            if sender.send(item).await.is_err() {
                                break;
                            }
                        }
                        iter
                    });

                    // Move into the busy state and poll again.
                    self.state = State::Streaming(Some(Box::new(receiver)), task);
                }

                // If streaming, receive an item.
                State::Streaming(Some(any), task) => {
                    let receiver = any.downcast_mut::<Receiver<T::Item>>().unwrap();

                    // Poll the channel.
                    let opt = ready!(Pin::new(receiver).poll_next(cx));

                    // If the channel is closed, retrieve the iterator back from the blocking task.
                    // This is not really a required step, but it's cleaner to drop the iterator on
                    // the same thread that created it.
                    if opt.is_none() {
                        // Poll the task to retrieve the iterator.
                        let iter = ready!(Pin::new(task).poll(cx));
                        self.state = State::Idle(Some(iter));
                    }

                    return Poll::Ready(opt);
                }
            }
        }
    }
}

impl<T: Read + Send + 'static> AsyncRead for Unblock<T> {
    fn poll_read(
        mut self: Pin<&mut Self>,
        cx: &mut Context<'_>,
        buf: &mut [u8],
    ) -> Poll<io::Result<usize>> {
        loop {
            match &mut self.state {
                // If not in idle or active reading state, stop the running task.
                State::WithMut(..)
                | State::Reading(None, _)
                | State::Streaming(..)
                | State::Writing(..)
                | State::Seeking(..) => {
                    // Wait for the running task to stop.
                    ready!(self.poll_stop(cx))?;
                }

                // If idle, start a reading task.
                State::Idle(io) => {
                    // Take the I/O handle out to read it on a blocking task.
                    let mut io = io.take().expect("inner value was taken out");

                    // This pipe capacity seems to work well in practice. If it's too low, there
                    // will be too much synchronization between tasks. If too high, memory
                    // consumption increases.
                    let (reader, mut writer) = pipe(self.cap.unwrap_or(8 * 1024 * 1024)); // 8 MB

                    // Spawn a blocking task that reads and returns the I/O handle when done.
                    let task = Executor::spawn(async move {
                        // Copy bytes from the I/O handle into the pipe until the pipe is closed or
                        // an error occurs.
                        loop {
                            match future::poll_fn(|cx| writer.fill(cx, &mut io)).await {
                                Ok(0) => return (Ok(()), io),
                                Ok(_) => {}
                                Err(err) => return (Err(err), io),
                            }
                        }
                    });

                    // Move into the busy state and poll again.
                    self.state = State::Reading(Some(reader), task);
                }

                // If reading, read bytes from the pipe.
                State::Reading(Some(reader), task) => {
                    // Poll the pipe.
                    let n = ready!(reader.drain(cx, buf))?;

                    // If the pipe is closed, retrieve the I/O handle back from the blocking task.
                    // This is not really a required step, but it's cleaner to drop the handle on
                    // the same thread that created it.
                    if n == 0 {
                        // Poll the task to retrieve the I/O handle.
                        let (res, io) = ready!(Pin::new(task).poll(cx));
                        // Make sure to move into the idle state before reporting errors.
                        self.state = State::Idle(Some(io));
                        res?;
                    }

                    return Poll::Ready(Ok(n));
                }
            }
        }
    }
}

impl<T: Write + Send + 'static> AsyncWrite for Unblock<T> {
    fn poll_write(
        mut self: Pin<&mut Self>,
        cx: &mut Context<'_>,
        buf: &[u8],
    ) -> Poll<io::Result<usize>> {
        loop {
            match &mut self.state {
                // If not in idle or active writing state, stop the running task.
                State::WithMut(..)
                | State::Writing(None, _)
                | State::Streaming(..)
                | State::Reading(..)
                | State::Seeking(..) => {
                    // Wait for the running task to stop.
                    ready!(self.poll_stop(cx))?;
                }

                // If idle, start the writing task.
                State::Idle(io) => {
                    // Take the I/O handle out to write on a blocking task.
                    let mut io = io.take().expect("inner value was taken out");

                    // This pipe capacity seems to work well in practice. If it's too low, there will
                    // be too much synchronization between tasks. If too high, memory consumption
                    // increases.
                    let (mut reader, writer) = pipe(self.cap.unwrap_or(8 * 1024 * 1024)); // 8 MB

                    // Spawn a blocking task that writes and returns the I/O handle when done.
                    let task = Executor::spawn(async move {
                        // Copy bytes from the pipe into the I/O handle until the pipe is closed or an
                        // error occurs. Flush the I/O handle at the end.
                        loop {
                            match future::poll_fn(|cx| reader.drain(cx, &mut io)).await {
                                Ok(0) => return (io.flush(), io),
                                Ok(_) => {}
                                Err(err) => {
                                    io.flush().ok();
                                    return (Err(err), io);
                                }
                            }
                        }
                    });

                    // Move into the busy state and poll again.
                    self.state = State::Writing(Some(writer), task);
                }

                // If writing, write more bytes into the pipe.
                State::Writing(Some(writer), _) => return writer.fill(cx, buf),
            }
        }
    }

    fn poll_flush(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<io::Result<()>> {
        loop {
            match &mut self.state {
                // If not in idle state, stop the running task.
                State::WithMut(..)
                | State::Streaming(..)
                | State::Writing(..)
                | State::Reading(..)
                | State::Seeking(..) => {
                    // Wait for the running task to stop.
                    ready!(self.poll_stop(cx))?;
                }

                // Idle implies flushed.
                State::Idle(_) => return Poll::Ready(Ok(())),
            }
        }
    }

    fn poll_close(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<io::Result<()>> {
        // First, make sure the I/O handle is flushed.
        ready!(Pin::new(&mut self).poll_flush(cx))?;

        // Then move into the idle state with no I/O handle, thus dropping it.
        self.state = State::Idle(None);
        Poll::Ready(Ok(()))
    }
}

impl<T: Seek + Send + 'static> AsyncSeek for Unblock<T> {
    fn poll_seek(
        mut self: Pin<&mut Self>,
        cx: &mut Context<'_>,
        pos: SeekFrom,
    ) -> Poll<io::Result<u64>> {
        loop {
            match &mut self.state {
                // If not in idle state, stop the running task.
                State::WithMut(..)
                | State::Streaming(..)
                | State::Reading(..)
                | State::Writing(..) => {
                    // Wait for the running task to stop.
                    ready!(self.poll_stop(cx))?;
                }

                State::Idle(io) => {
                    // Take the I/O handle out to seek on a blocking task.
                    let mut io = io.take().expect("inner value was taken out");

                    let task = Executor::spawn(async move {
                        let res = io.seek(pos);
                        (pos, res, io)
                    });
                    self.state = State::Seeking(task);
                }

                State::Seeking(task) => {
                    // Poll the task to wait for it to finish.
                    let (original_pos, res, io) = ready!(Pin::new(task).poll(cx));
                    // Make sure to move into the idle state before reporting errors.
                    self.state = State::Idle(Some(io));
                    let current = res?;

                    // If the `pos` argument matches the original one, return the result.
                    if original_pos == pos {
                        return Poll::Ready(Ok(current));
                    }
                }
            }
        }
    }
}

/// Creates a bounded single-producer single-consumer pipe.
///
/// A pipe is a ring buffer of `cap` bytes that can be asynchronously read from and written to.
///
/// When the sender is dropped, remaining bytes in the pipe can still be read. After that, attempts
/// to read will result in `Ok(0)`, i.e. they will always 'successfully' read 0 bytes.
///
/// When the receiver is dropped, the pipe is closed and no more bytes and be written into it.
/// Further writes will result in `Ok(0)`, i.e. they will always 'successfully' write 0 bytes.
fn pipe(cap: usize) -> (Reader, Writer) {
    assert!(cap > 0, "capacity must be positive");
    assert!(cap.checked_mul(2).is_some(), "capacity is too large");

    // Allocate the ring buffer.
    let mut v = Vec::with_capacity(cap);
    let buffer = v.as_mut_ptr();
    mem::forget(v);

    let inner = Arc::new(Pipe {
        head: AtomicUsize::new(0),
        tail: AtomicUsize::new(0),
        reader: AtomicWaker::new(),
        writer: AtomicWaker::new(),
        closed: AtomicBool::new(false),
        buffer,
        cap,
    });

    let r = Reader {
        inner: inner.clone(),
        head: 0,
        tail: 0,
    };

    let w = Writer {
        inner,
        head: 0,
        tail: 0,
        zeroed_until: 0,
    };

    (r, w)
}

/// The reading side of a pipe.
struct Reader {
    /// The inner ring buffer.
    inner: Arc<Pipe>,

    /// The head index, moved by the reader, in the range `0..2*cap`.
    ///
    /// This index always matches `inner.head`.
    head: usize,

    /// The tail index, moved by the writer, in the range `0..2*cap`.
    ///
    /// This index is a snapshot of `index.tail` that might become stale at any point.
    tail: usize,
}

/// The writing side of a pipe.
struct Writer {
    /// The inner ring buffer.
    inner: Arc<Pipe>,

    /// The head index, moved by the reader, in the range `0..2*cap`.
    ///
    /// This index is a snapshot of `index.head` that might become stale at any point.
    head: usize,

    /// The tail index, moved by the writer, in the range `0..2*cap`.
    ///
    /// This index always matches `inner.tail`.
    tail: usize,

    /// How many bytes at the beginning of the buffer have been zeroed.
    ///
    /// The pipe allocates an uninitialized buffer, and we must be careful about passing
    /// uninitialized data to user code. Zeroing the buffer right after allocation would be too
    /// expensive, so we zero it in smaller chunks as the writer makes progress.
    zeroed_until: usize,
}

unsafe impl Send for Reader {}
unsafe impl Send for Writer {}

/// The inner ring buffer.
///
/// Head and tail indices are in the range `0..2*cap`, even though they really map onto the
/// `0..cap` range. The distance between head and tail indices is never more than `cap`.
///
/// The reason why indices are not in the range `0..cap` is because we need to distinguish between
/// the pipe being empty and being full. If head and tail were in `0..cap`, then `head == tail`
/// could mean the pipe is either empty or full, but we don't know which!
struct Pipe {
    /// The head index, moved by the reader, in the range `0..2*cap`.
    head: AtomicUsize,

    /// The tail index, moved by the writer, in the range `0..2*cap`.
    tail: AtomicUsize,

    /// A waker representing the blocked reader.
    reader: AtomicWaker,

    /// A waker representing the blocked writer.
    writer: AtomicWaker,

    /// Set to `true` if the reader or writer was dropped.
    closed: AtomicBool,

    /// The byte buffer.
    buffer: *mut u8,

    /// The buffer capacity.
    cap: usize,
}

unsafe impl Sync for Pipe {}
unsafe impl Send for Pipe {}

impl Drop for Pipe {
    fn drop(&mut self) {
        // Deallocate the byte buffer.
        unsafe {
            Vec::from_raw_parts(self.buffer, 0, self.cap);
        }
    }
}

impl Drop for Reader {
    fn drop(&mut self) {
        // Dropping closes the pipe and then wakes the writer.
        self.inner.closed.store(true, Ordering::SeqCst);
        self.inner.writer.wake();
    }
}

impl Drop for Writer {
    fn drop(&mut self) {
        // Dropping closes the pipe and then wakes the reader.
        self.inner.closed.store(true, Ordering::SeqCst);
        self.inner.reader.wake();
    }
}

impl Reader {
    /// Reads bytes from this reader and writes into blocking `dest`.
    fn drain(&mut self, cx: &mut Context<'_>, mut dest: impl Write) -> Poll<io::Result<usize>> {
        let cap = self.inner.cap;

        // Calculates the distance between two indices.
        let distance = |a: usize, b: usize| {
            if a <= b {
                b - a
            } else {
                2 * cap - (a - b)
            }
        };

        // If the pipe appears to be empty...
        if distance(self.head, self.tail) == 0 {
            // Reload the tail in case it's become stale.
            self.tail = self.inner.tail.load(Ordering::Acquire);

            // If the pipe is now really empty...
            if distance(self.head, self.tail) == 0 {
                // Register the waker.
                self.inner.reader.register(cx.waker());
                atomic::fence(Ordering::SeqCst);

                // Reload the tail after registering the waker.
                self.tail = self.inner.tail.load(Ordering::Acquire);

                // If the pipe is still empty...
                if distance(self.head, self.tail) == 0 {
                    // Check whether the pipe is closed or just empty.
                    if self.inner.closed.load(Ordering::Relaxed) {
                        return Poll::Ready(Ok(0));
                    } else {
                        return Poll::Pending;
                    }
                }
            }
        }

        // The pipe is not empty so remove the waker.
        self.inner.reader.take();

        // Yield with some small probability - this improves fairness.
        ready!(maybe_yield(cx));

        // Given an index in `0..2*cap`, returns the real index in `0..cap`.
        let real_index = |i: usize| {
            if i < cap {
                i
            } else {
                i - cap
            }
        };

        // Number of bytes read so far.
        let mut count = 0;

        loop {
            // Calculate how many bytes to read in this iteration.
            let n = (128 * 1024) // Not too many bytes in one go - better to wake the writer soon!
                .min(distance(self.head, self.tail)) // No more than bytes in the pipe.
                .min(cap - real_index(self.head)); // Don't go past the buffer boundary.

            // Create a slice of data in the pipe buffer.
            let pipe_slice =
                unsafe { slice::from_raw_parts(self.inner.buffer.add(real_index(self.head)), n) };

            // Copy bytes from the pipe buffer into `dest`.
            let n = dest.write(pipe_slice)?;
            count += n;

            // If pipe is empty or `dest` is full, return.
            if n == 0 {
                return Poll::Ready(Ok(count));
            }

            // Move the head forward.
            if self.head + n < 2 * cap {
                self.head += n;
            } else {
                self.head = 0;
            }

            // Store the current head index.
            self.inner.head.store(self.head, Ordering::Release);

            // Wake the writer because the pipe is not full.
            self.inner.writer.wake();
        }
    }
}

impl Writer {
    /// Reads bytes from blocking `src` and writes into this writer.
    fn fill(&mut self, cx: &mut Context<'_>, mut src: impl Read) -> Poll<io::Result<usize>> {
        // Just a quick check if the pipe is closed, which is why a relaxed load is okay.
        if self.inner.closed.load(Ordering::Relaxed) {
            return Poll::Ready(Ok(0));
        }

        // Calculates the distance between two indices.
        let cap = self.inner.cap;
        let distance = |a: usize, b: usize| {
            if a <= b {
                b - a
            } else {
                2 * cap - (a - b)
            }
        };

        // If the pipe appears to be full...
        if distance(self.head, self.tail) == cap {
            // Reload the head in case it's become stale.
            self.head = self.inner.head.load(Ordering::Acquire);

            // If the pipe is now really empty...
            if distance(self.head, self.tail) == cap {
                // Register the waker.
                self.inner.writer.register(cx.waker());
                atomic::fence(Ordering::SeqCst);

                // Reload the head after registering the waker.
                self.head = self.inner.head.load(Ordering::Acquire);

                // If the pipe is still full...
                if distance(self.head, self.tail) == cap {
                    // Check whether the pipe is closed or just full.
                    if self.inner.closed.load(Ordering::Relaxed) {
                        return Poll::Ready(Ok(0));
                    } else {
                        return Poll::Pending;
                    }
                }
            }
        }

        // The pipe is not full so remove the waker.
        self.inner.writer.take();

        // Yield with some small probability - this improves fairness.
        ready!(maybe_yield(cx));

        // Given an index in `0..2*cap`, returns the real index in `0..cap`.
        let real_index = |i: usize| {
            if i < cap {
                i
            } else {
                i - cap
            }
        };

        // Number of bytes written so far.
        let mut count = 0;

        loop {
            // Calculate how many bytes to write in this iteration.
            let n = (128 * 1024) // Not too many bytes in one go - better to wake the reader soon!
                .min(self.zeroed_until * 2 + 4096) // Don't zero too many bytes when starting.
                .min(cap - distance(self.head, self.tail)) // No more than space in the pipe.
                .min(cap - real_index(self.tail)); // Don't go past the buffer boundary.

            // Create a slice of available space in the pipe buffer.
            let pipe_slice_mut = unsafe {
                let from = real_index(self.tail);
                let to = from + n;

                // Make sure all bytes in the slice are initialized.
                if self.zeroed_until < to {
                    self.inner
                        .buffer
                        .add(self.zeroed_until)
                        .write_bytes(0u8, to - self.zeroed_until);
                    self.zeroed_until = to;
                }

                slice::from_raw_parts_mut(self.inner.buffer.add(from), n)
            };

            // Copy bytes from `src` into the piper buffer.
            let n = src.read(pipe_slice_mut)?;
            count += n;

            // If the pipe is full or closed, or `src` is empty, return.
            if n == 0 || self.inner.closed.load(Ordering::Relaxed) {
                return Poll::Ready(Ok(count));
            }

            // Move the tail forward.
            if self.tail + n < 2 * cap {
                self.tail += n;
            } else {
                self.tail = 0;
            }

            // Store the current tail index.
            self.inner.tail.store(self.tail, Ordering::Release);

            // Wake the reader because the pipe is not empty.
            self.inner.reader.wake();
        }
    }
}

/// Yield with some small probability.
fn maybe_yield(cx: &mut Context<'_>) -> Poll<()> {
    if fastrand::usize(..100) == 0 {
        cx.waker().wake_by_ref();
        Poll::Pending
    } else {
        Poll::Ready(())
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    #[test]
    fn test_max_threads() {
        // properly set env var
        env::set_var(MAX_THREADS_ENV, "100");
        assert_eq!(100, Executor::max_threads());

        // passed value below minimum, so we set it to minimum
        env::set_var(MAX_THREADS_ENV, "0");
        assert_eq!(1, Executor::max_threads());

        // passed value above maximum, so we set to allowed maximum
        env::set_var(MAX_THREADS_ENV, "50000");
        assert_eq!(10000, Executor::max_threads());

        // no env var, use default
        env::set_var(MAX_THREADS_ENV, "");
        assert_eq!(500, Executor::max_threads());

        // not a number, use default
        env::set_var(MAX_THREADS_ENV, "NOTINT");
        assert_eq!(500, Executor::max_threads());
    }
}