1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
//! Data flow graph tracking Instructions, Values, and blocks.

use crate::entity::{self, PrimaryMap, SecondaryMap};
use crate::ir;
use crate::ir::builder::ReplaceBuilder;
use crate::ir::dynamic_type::{DynamicTypeData, DynamicTypes};
use crate::ir::instructions::{BranchInfo, CallInfo, InstructionData};
use crate::ir::{types, ConstantData, ConstantPool, Immediate};
use crate::ir::{
    Block, DynamicType, FuncRef, Inst, SigRef, Signature, Type, Value, ValueLabelAssignments,
    ValueList, ValueListPool,
};
use crate::ir::{ExtFuncData, RelSourceLoc};
use crate::packed_option::ReservedValue;
use crate::write::write_operands;
use core::fmt;
use core::iter;
use core::mem;
use core::ops::{Index, IndexMut};
use core::u16;

use alloc::collections::BTreeMap;
#[cfg(feature = "enable-serde")]
use serde::{Deserialize, Serialize};

/// A data flow graph defines all instructions and basic blocks in a function as well as
/// the data flow dependencies between them. The DFG also tracks values which can be either
/// instruction results or block parameters.
///
/// The layout of blocks in the function and of instructions in each block is recorded by the
/// `Layout` data structure which forms the other half of the function representation.
///
#[derive(Clone, PartialEq, Hash)]
#[cfg_attr(feature = "enable-serde", derive(Serialize, Deserialize))]
pub struct DataFlowGraph {
    /// Data about all of the instructions in the function, including opcodes and operands.
    /// The instructions in this map are not in program order. That is tracked by `Layout`, along
    /// with the block containing each instruction.
    insts: PrimaryMap<Inst, InstructionData>,

    /// List of result values for each instruction.
    ///
    /// This map gets resized automatically by `make_inst()` so it is always in sync with the
    /// primary `insts` map.
    results: SecondaryMap<Inst, ValueList>,

    /// basic blocks in the function and their parameters.
    ///
    /// This map is not in program order. That is handled by `Layout`, and so is the sequence of
    /// instructions contained in each block.
    blocks: PrimaryMap<Block, BlockData>,

    /// Dynamic types created.
    pub dynamic_types: DynamicTypes,

    /// Memory pool of value lists.
    ///
    /// The `ValueList` references into this pool appear in many places:
    ///
    /// - Instructions in `insts` that don't have room for their entire argument list inline.
    /// - Instruction result values in `results`.
    /// - block parameters in `blocks`.
    pub value_lists: ValueListPool,

    /// Primary value table with entries for all values.
    values: PrimaryMap<Value, ValueDataPacked>,

    /// Function signature table. These signatures are referenced by indirect call instructions as
    /// well as the external function references.
    pub signatures: PrimaryMap<SigRef, Signature>,

    /// The pre-legalization signature for each entry in `signatures`, if any.
    pub old_signatures: SecondaryMap<SigRef, Option<Signature>>,

    /// External function references. These are functions that can be called directly.
    pub ext_funcs: PrimaryMap<FuncRef, ExtFuncData>,

    /// Saves Value labels.
    pub values_labels: Option<BTreeMap<Value, ValueLabelAssignments>>,

    /// Constants used within the function
    pub constants: ConstantPool,

    /// Stores large immediates that otherwise will not fit on InstructionData
    pub immediates: PrimaryMap<Immediate, ConstantData>,
}

impl DataFlowGraph {
    /// Create a new empty `DataFlowGraph`.
    pub fn new() -> Self {
        Self {
            insts: PrimaryMap::new(),
            results: SecondaryMap::new(),
            blocks: PrimaryMap::new(),
            dynamic_types: DynamicTypes::new(),
            value_lists: ValueListPool::new(),
            values: PrimaryMap::new(),
            signatures: PrimaryMap::new(),
            old_signatures: SecondaryMap::new(),
            ext_funcs: PrimaryMap::new(),
            values_labels: None,
            constants: ConstantPool::new(),
            immediates: PrimaryMap::new(),
        }
    }

    /// Clear everything.
    pub fn clear(&mut self) {
        self.insts.clear();
        self.results.clear();
        self.blocks.clear();
        self.dynamic_types.clear();
        self.value_lists.clear();
        self.values.clear();
        self.signatures.clear();
        self.old_signatures.clear();
        self.ext_funcs.clear();
        self.values_labels = None;
        self.constants.clear();
        self.immediates.clear();
    }

    /// Get the total number of instructions created in this function, whether they are currently
    /// inserted in the layout or not.
    ///
    /// This is intended for use with `SecondaryMap::with_capacity`.
    pub fn num_insts(&self) -> usize {
        self.insts.len()
    }

    /// Returns `true` if the given instruction reference is valid.
    pub fn inst_is_valid(&self, inst: Inst) -> bool {
        self.insts.is_valid(inst)
    }

    /// Get the total number of basic blocks created in this function, whether they are
    /// currently inserted in the layout or not.
    ///
    /// This is intended for use with `SecondaryMap::with_capacity`.
    pub fn num_blocks(&self) -> usize {
        self.blocks.len()
    }

    /// Returns `true` if the given block reference is valid.
    pub fn block_is_valid(&self, block: Block) -> bool {
        self.blocks.is_valid(block)
    }

    /// Get the total number of values.
    pub fn num_values(&self) -> usize {
        self.values.len()
    }

    /// Starts collection of debug information.
    pub fn collect_debug_info(&mut self) {
        if self.values_labels.is_none() {
            self.values_labels = Some(Default::default());
        }
    }

    /// Inserts a `ValueLabelAssignments::Alias` for `to_alias` if debug info
    /// collection is enabled.
    pub fn add_value_label_alias(&mut self, to_alias: Value, from: RelSourceLoc, value: Value) {
        if let Some(values_labels) = self.values_labels.as_mut() {
            values_labels.insert(to_alias, ir::ValueLabelAssignments::Alias { from, value });
        }
    }
}

/// Resolve value aliases.
///
/// Find the original SSA value that `value` aliases, or None if an
/// alias cycle is detected.
fn maybe_resolve_aliases(
    values: &PrimaryMap<Value, ValueDataPacked>,
    value: Value,
) -> Option<Value> {
    let mut v = value;

    // Note that values may be empty here.
    for _ in 0..=values.len() {
        if let ValueData::Alias { original, .. } = ValueData::from(values[v]) {
            v = original;
        } else {
            return Some(v);
        }
    }

    None
}

/// Resolve value aliases.
///
/// Find the original SSA value that `value` aliases.
fn resolve_aliases(values: &PrimaryMap<Value, ValueDataPacked>, value: Value) -> Value {
    if let Some(v) = maybe_resolve_aliases(values, value) {
        v
    } else {
        panic!("Value alias loop detected for {}", value);
    }
}

/// Iterator over all Values in a DFG
pub struct Values<'a> {
    inner: entity::Iter<'a, Value, ValueDataPacked>,
}

/// Check for non-values
fn valid_valuedata(data: ValueDataPacked) -> bool {
    let data = ValueData::from(data);
    if let ValueData::Alias {
        ty: types::INVALID,
        original,
    } = ValueData::from(data)
    {
        if original == Value::reserved_value() {
            return false;
        }
    }
    true
}

impl<'a> Iterator for Values<'a> {
    type Item = Value;

    fn next(&mut self) -> Option<Self::Item> {
        self.inner
            .by_ref()
            .find(|kv| valid_valuedata(*kv.1))
            .map(|kv| kv.0)
    }
}

/// Handling values.
///
/// Values are either block parameters or instruction results.
impl DataFlowGraph {
    /// Allocate an extended value entry.
    fn make_value(&mut self, data: ValueData) -> Value {
        self.values.push(data.into())
    }

    /// Get an iterator over all values.
    pub fn values<'a>(&'a self) -> Values {
        Values {
            inner: self.values.iter(),
        }
    }

    /// Check if a value reference is valid.
    pub fn value_is_valid(&self, v: Value) -> bool {
        self.values.is_valid(v)
    }

    /// Get the type of a value.
    pub fn value_type(&self, v: Value) -> Type {
        self.values[v].ty()
    }

    /// Get the definition of a value.
    ///
    /// This is either the instruction that defined it or the Block that has the value as an
    /// parameter.
    pub fn value_def(&self, v: Value) -> ValueDef {
        match ValueData::from(self.values[v]) {
            ValueData::Inst { inst, num, .. } => ValueDef::Result(inst, num as usize),
            ValueData::Param { block, num, .. } => ValueDef::Param(block, num as usize),
            ValueData::Alias { original, .. } => {
                // Make sure we only recurse one level. `resolve_aliases` has safeguards to
                // detect alias loops without overrunning the stack.
                self.value_def(self.resolve_aliases(original))
            }
        }
    }

    /// Determine if `v` is an attached instruction result / block parameter.
    ///
    /// An attached value can't be attached to something else without first being detached.
    ///
    /// Value aliases are not considered to be attached to anything. Use `resolve_aliases()` to
    /// determine if the original aliased value is attached.
    pub fn value_is_attached(&self, v: Value) -> bool {
        use self::ValueData::*;
        match ValueData::from(self.values[v]) {
            Inst { inst, num, .. } => Some(&v) == self.inst_results(inst).get(num as usize),
            Param { block, num, .. } => Some(&v) == self.block_params(block).get(num as usize),
            Alias { .. } => false,
        }
    }

    /// Resolve value aliases.
    ///
    /// Find the original SSA value that `value` aliases.
    pub fn resolve_aliases(&self, value: Value) -> Value {
        resolve_aliases(&self.values, value)
    }

    /// Resolve all aliases among inst's arguments.
    ///
    /// For each argument of inst which is defined by an alias, replace the
    /// alias with the aliased value.
    pub fn resolve_aliases_in_arguments(&mut self, inst: Inst) {
        for arg in self.insts[inst].arguments_mut(&mut self.value_lists) {
            let resolved = resolve_aliases(&self.values, *arg);
            if resolved != *arg {
                *arg = resolved;
            }
        }
    }

    /// Turn a value into an alias of another.
    ///
    /// Change the `dest` value to behave as an alias of `src`. This means that all uses of `dest`
    /// will behave as if they used that value `src`.
    ///
    /// The `dest` value can't be attached to an instruction or block.
    pub fn change_to_alias(&mut self, dest: Value, src: Value) {
        debug_assert!(!self.value_is_attached(dest));
        // Try to create short alias chains by finding the original source value.
        // This also avoids the creation of loops.
        let original = self.resolve_aliases(src);
        debug_assert_ne!(
            dest, original,
            "Aliasing {} to {} would create a loop",
            dest, src
        );
        let ty = self.value_type(original);
        debug_assert_eq!(
            self.value_type(dest),
            ty,
            "Aliasing {} to {} would change its type {} to {}",
            dest,
            src,
            self.value_type(dest),
            ty
        );
        debug_assert_ne!(ty, types::INVALID);

        self.values[dest] = ValueData::Alias { ty, original }.into();
    }

    /// Replace the results of one instruction with aliases to the results of another.
    ///
    /// Change all the results of `dest_inst` to behave as aliases of
    /// corresponding results of `src_inst`, as if calling change_to_alias for
    /// each.
    ///
    /// After calling this instruction, `dest_inst` will have had its results
    /// cleared, so it likely needs to be removed from the graph.
    ///
    pub fn replace_with_aliases(&mut self, dest_inst: Inst, src_inst: Inst) {
        debug_assert_ne!(
            dest_inst, src_inst,
            "Replacing {} with itself would create a loop",
            dest_inst
        );
        debug_assert_eq!(
            self.results[dest_inst].len(&self.value_lists),
            self.results[src_inst].len(&self.value_lists),
            "Replacing {} with {} would produce a different number of results.",
            dest_inst,
            src_inst
        );

        for (&dest, &src) in self.results[dest_inst]
            .as_slice(&self.value_lists)
            .iter()
            .zip(self.results[src_inst].as_slice(&self.value_lists))
        {
            let original = src;
            let ty = self.value_type(original);
            debug_assert_eq!(
                self.value_type(dest),
                ty,
                "Aliasing {} to {} would change its type {} to {}",
                dest,
                src,
                self.value_type(dest),
                ty
            );
            debug_assert_ne!(ty, types::INVALID);

            self.values[dest] = ValueData::Alias { ty, original }.into();
        }

        self.clear_results(dest_inst);
    }
}

/// Where did a value come from?
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
pub enum ValueDef {
    /// Value is the n'th result of an instruction.
    Result(Inst, usize),
    /// Value is the n'th parameter to a block.
    Param(Block, usize),
}

impl ValueDef {
    /// Unwrap the instruction where the value was defined, or panic.
    pub fn unwrap_inst(&self) -> Inst {
        self.inst().expect("Value is not an instruction result")
    }

    /// Get the instruction where the value was defined, if any.
    pub fn inst(&self) -> Option<Inst> {
        match *self {
            Self::Result(inst, _) => Some(inst),
            _ => None,
        }
    }

    /// Unwrap the block there the parameter is defined, or panic.
    pub fn unwrap_block(&self) -> Block {
        match *self {
            Self::Param(block, _) => block,
            _ => panic!("Value is not a block parameter"),
        }
    }

    /// Get the program point where the value was defined.
    pub fn pp(self) -> ir::ExpandedProgramPoint {
        self.into()
    }

    /// Get the number component of this definition.
    ///
    /// When multiple values are defined at the same program point, this indicates the index of
    /// this value.
    pub fn num(self) -> usize {
        match self {
            Self::Result(_, n) | Self::Param(_, n) => n,
        }
    }
}

/// Internal table storage for extended values.
#[derive(Clone, Debug, PartialEq, Hash)]
#[cfg_attr(feature = "enable-serde", derive(Serialize, Deserialize))]
enum ValueData {
    /// Value is defined by an instruction.
    Inst { ty: Type, num: u16, inst: Inst },

    /// Value is a block parameter.
    Param { ty: Type, num: u16, block: Block },

    /// Value is an alias of another value.
    /// An alias value can't be linked as an instruction result or block parameter. It is used as a
    /// placeholder when the original instruction or block has been rewritten or modified.
    Alias { ty: Type, original: Value },
}

/// Bit-packed version of ValueData, for efficiency.
///
/// Layout:
///
/// ```plain
///        | tag:2 |  type:14        |    num:16       | index:32          |
/// ```
#[derive(Clone, Copy, Debug, PartialEq, Hash)]
#[cfg_attr(feature = "enable-serde", derive(Serialize, Deserialize))]
struct ValueDataPacked(u64);

impl ValueDataPacked {
    const INDEX_SHIFT: u64 = 0;
    const INDEX_BITS: u64 = 32;
    const NUM_SHIFT: u64 = Self::INDEX_SHIFT + Self::INDEX_BITS;
    const NUM_BITS: u64 = 16;
    const TYPE_SHIFT: u64 = Self::NUM_SHIFT + Self::NUM_BITS;
    const TYPE_BITS: u64 = 14;
    const TAG_SHIFT: u64 = Self::TYPE_SHIFT + Self::TYPE_BITS;
    const TAG_BITS: u64 = 2;

    const TAG_INST: u64 = 1;
    const TAG_PARAM: u64 = 2;
    const TAG_ALIAS: u64 = 3;

    fn make(tag: u64, ty: Type, num: u16, index: u32) -> ValueDataPacked {
        debug_assert!(tag < (1 << Self::TAG_BITS));
        debug_assert!(ty.repr() < (1 << Self::TYPE_BITS));

        ValueDataPacked(
            (tag << Self::TAG_SHIFT)
                | ((ty.repr() as u64) << Self::TYPE_SHIFT)
                | ((num as u64) << Self::NUM_SHIFT)
                | ((index as u64) << Self::INDEX_SHIFT),
        )
    }

    #[inline(always)]
    fn field(self, shift: u64, bits: u64) -> u64 {
        (self.0 >> shift) & ((1 << bits) - 1)
    }

    #[inline(always)]
    fn ty(self) -> Type {
        let ty = self.field(ValueDataPacked::TYPE_SHIFT, ValueDataPacked::TYPE_BITS) as u16;
        Type::from_repr(ty)
    }

    #[inline(always)]
    fn set_type(&mut self, ty: Type) {
        self.0 &= !((1 << Self::TYPE_BITS) - 1) << Self::TYPE_SHIFT;
        self.0 |= (ty.repr() as u64) << Self::TYPE_SHIFT;
    }
}

impl From<ValueData> for ValueDataPacked {
    fn from(data: ValueData) -> Self {
        match data {
            ValueData::Inst { ty, num, inst } => {
                Self::make(Self::TAG_INST, ty, num, inst.as_bits())
            }
            ValueData::Param { ty, num, block } => {
                Self::make(Self::TAG_PARAM, ty, num, block.as_bits())
            }
            ValueData::Alias { ty, original } => {
                Self::make(Self::TAG_ALIAS, ty, 0, original.as_bits())
            }
        }
    }
}

impl From<ValueDataPacked> for ValueData {
    fn from(data: ValueDataPacked) -> Self {
        let tag = data.field(ValueDataPacked::TAG_SHIFT, ValueDataPacked::TAG_BITS);
        let ty = data.field(ValueDataPacked::TYPE_SHIFT, ValueDataPacked::TYPE_BITS) as u16;
        let num = data.field(ValueDataPacked::NUM_SHIFT, ValueDataPacked::NUM_BITS) as u16;
        let index = data.field(ValueDataPacked::INDEX_SHIFT, ValueDataPacked::INDEX_BITS) as u32;

        let ty = Type::from_repr(ty);
        match tag {
            ValueDataPacked::TAG_INST => ValueData::Inst {
                ty,
                num,
                inst: Inst::from_bits(index),
            },
            ValueDataPacked::TAG_PARAM => ValueData::Param {
                ty,
                num,
                block: Block::from_bits(index),
            },
            ValueDataPacked::TAG_ALIAS => ValueData::Alias {
                ty,
                original: Value::from_bits(index),
            },
            _ => panic!("Invalid tag {} in ValueDataPacked 0x{:x}", tag, data.0),
        }
    }
}

/// Instructions.
///
impl DataFlowGraph {
    /// Create a new instruction.
    ///
    /// The type of the first result is indicated by `data.ty`. If the instruction produces
    /// multiple results, also call `make_inst_results` to allocate value table entries.
    pub fn make_inst(&mut self, data: InstructionData) -> Inst {
        let n = self.num_insts() + 1;
        self.results.resize(n);
        self.insts.push(data)
    }

    /// Declares a dynamic vector type
    pub fn make_dynamic_ty(&mut self, data: DynamicTypeData) -> DynamicType {
        self.dynamic_types.push(data)
    }

    /// Returns an object that displays `inst`.
    pub fn display_inst<'a>(&'a self, inst: Inst) -> DisplayInst<'a> {
        DisplayInst(self, inst)
    }

    /// Get all value arguments on `inst` as a slice.
    pub fn inst_args(&self, inst: Inst) -> &[Value] {
        self.insts[inst].arguments(&self.value_lists)
    }

    /// Get all value arguments on `inst` as a mutable slice.
    pub fn inst_args_mut(&mut self, inst: Inst) -> &mut [Value] {
        self.insts[inst].arguments_mut(&mut self.value_lists)
    }

    /// Get the fixed value arguments on `inst` as a slice.
    pub fn inst_fixed_args(&self, inst: Inst) -> &[Value] {
        let num_fixed_args = self[inst]
            .opcode()
            .constraints()
            .num_fixed_value_arguments();
        &self.inst_args(inst)[..num_fixed_args]
    }

    /// Get the fixed value arguments on `inst` as a mutable slice.
    pub fn inst_fixed_args_mut(&mut self, inst: Inst) -> &mut [Value] {
        let num_fixed_args = self[inst]
            .opcode()
            .constraints()
            .num_fixed_value_arguments();
        &mut self.inst_args_mut(inst)[..num_fixed_args]
    }

    /// Get the variable value arguments on `inst` as a slice.
    pub fn inst_variable_args(&self, inst: Inst) -> &[Value] {
        let num_fixed_args = self[inst]
            .opcode()
            .constraints()
            .num_fixed_value_arguments();
        &self.inst_args(inst)[num_fixed_args..]
    }

    /// Get the variable value arguments on `inst` as a mutable slice.
    pub fn inst_variable_args_mut(&mut self, inst: Inst) -> &mut [Value] {
        let num_fixed_args = self[inst]
            .opcode()
            .constraints()
            .num_fixed_value_arguments();
        &mut self.inst_args_mut(inst)[num_fixed_args..]
    }

    /// Create result values for an instruction that produces multiple results.
    ///
    /// Instructions that produce no result values only need to be created with `make_inst`,
    /// otherwise call `make_inst_results` to allocate value table entries for the results.
    ///
    /// The result value types are determined from the instruction's value type constraints and the
    /// provided `ctrl_typevar` type for polymorphic instructions. For non-polymorphic
    /// instructions, `ctrl_typevar` is ignored, and `INVALID` can be used.
    ///
    /// The type of the first result value is also set, even if it was already set in the
    /// `InstructionData` passed to `make_inst`. If this function is called with a single-result
    /// instruction, that is the only effect.
    pub fn make_inst_results(&mut self, inst: Inst, ctrl_typevar: Type) -> usize {
        self.make_inst_results_reusing(inst, ctrl_typevar, iter::empty())
    }

    /// Create result values for `inst`, reusing the provided detached values.
    ///
    /// Create a new set of result values for `inst` using `ctrl_typevar` to determine the result
    /// types. Any values provided by `reuse` will be reused. When `reuse` is exhausted or when it
    /// produces `None`, a new value is created.
    pub fn make_inst_results_reusing<I>(
        &mut self,
        inst: Inst,
        ctrl_typevar: Type,
        reuse: I,
    ) -> usize
    where
        I: Iterator<Item = Option<Value>>,
    {
        let mut reuse = reuse.fuse();

        self.results[inst].clear(&mut self.value_lists);

        // Get the call signature if this is a function call.
        if let Some(sig) = self.call_signature(inst) {
            // Create result values corresponding to the call return types.
            debug_assert_eq!(
                self.insts[inst].opcode().constraints().num_fixed_results(),
                0
            );
            let num_results = self.signatures[sig].returns.len();
            for res_idx in 0..num_results {
                let ty = self.signatures[sig].returns[res_idx].value_type;
                if let Some(Some(v)) = reuse.next() {
                    debug_assert_eq!(self.value_type(v), ty, "Reused {} is wrong type", ty);
                    self.attach_result(inst, v);
                } else {
                    self.append_result(inst, ty);
                }
            }
            num_results
        } else {
            // Create result values corresponding to the opcode's constraints.
            let constraints = self.insts[inst].opcode().constraints();
            let num_results = constraints.num_fixed_results();
            for res_idx in 0..num_results {
                let ty = constraints.result_type(res_idx, ctrl_typevar);
                if let Some(Some(v)) = reuse.next() {
                    debug_assert_eq!(self.value_type(v), ty, "Reused {} is wrong type", ty);
                    self.attach_result(inst, v);
                } else {
                    self.append_result(inst, ty);
                }
            }
            num_results
        }
    }

    /// Create a `ReplaceBuilder` that will replace `inst` with a new instruction in place.
    pub fn replace(&mut self, inst: Inst) -> ReplaceBuilder {
        ReplaceBuilder::new(self, inst)
    }

    /// Detach the list of result values from `inst` and return it.
    ///
    /// This leaves `inst` without any result values. New result values can be created by calling
    /// `make_inst_results` or by using a `replace(inst)` builder.
    pub fn detach_results(&mut self, inst: Inst) -> ValueList {
        self.results[inst].take()
    }

    /// Clear the list of result values from `inst`.
    ///
    /// This leaves `inst` without any result values. New result values can be created by calling
    /// `make_inst_results` or by using a `replace(inst)` builder.
    pub fn clear_results(&mut self, inst: Inst) {
        self.results[inst].clear(&mut self.value_lists)
    }

    /// Attach an existing value to the result value list for `inst`.
    ///
    /// The `res` value is appended to the end of the result list.
    ///
    /// This is a very low-level operation. Usually, instruction results with the correct types are
    /// created automatically. The `res` value must not be attached to anything else.
    pub fn attach_result(&mut self, inst: Inst, res: Value) {
        debug_assert!(!self.value_is_attached(res));
        let num = self.results[inst].push(res, &mut self.value_lists);
        debug_assert!(num <= u16::MAX as usize, "Too many result values");
        let ty = self.value_type(res);
        self.values[res] = ValueData::Inst {
            ty,
            num: num as u16,
            inst,
        }
        .into();
    }

    /// Replace an instruction result with a new value of type `new_type`.
    ///
    /// The `old_value` must be an attached instruction result.
    ///
    /// The old value is left detached, so it should probably be changed into something else.
    ///
    /// Returns the new value.
    pub fn replace_result(&mut self, old_value: Value, new_type: Type) -> Value {
        let (num, inst) = match ValueData::from(self.values[old_value]) {
            ValueData::Inst { num, inst, .. } => (num, inst),
            _ => panic!("{} is not an instruction result value", old_value),
        };
        let new_value = self.make_value(ValueData::Inst {
            ty: new_type,
            num,
            inst,
        });
        let num = num as usize;
        let attached = mem::replace(
            self.results[inst]
                .get_mut(num, &mut self.value_lists)
                .expect("Replacing detached result"),
            new_value,
        );
        debug_assert_eq!(
            attached,
            old_value,
            "{} wasn't detached from {}",
            old_value,
            self.display_inst(inst)
        );
        new_value
    }

    /// Append a new instruction result value to `inst`.
    pub fn append_result(&mut self, inst: Inst, ty: Type) -> Value {
        let res = self.values.next_key();
        let num = self.results[inst].push(res, &mut self.value_lists);
        debug_assert!(num <= u16::MAX as usize, "Too many result values");
        self.make_value(ValueData::Inst {
            ty,
            inst,
            num: num as u16,
        })
    }

    /// Append a new value argument to an instruction.
    ///
    /// Panics if the instruction doesn't support arguments.
    pub fn append_inst_arg(&mut self, inst: Inst, new_arg: Value) {
        let mut branch_values = self.insts[inst]
            .take_value_list()
            .expect("the instruction doesn't have value arguments");
        branch_values.push(new_arg, &mut self.value_lists);
        self.insts[inst].put_value_list(branch_values)
    }

    /// Get the first result of an instruction.
    ///
    /// This function panics if the instruction doesn't have any result.
    pub fn first_result(&self, inst: Inst) -> Value {
        self.results[inst]
            .first(&self.value_lists)
            .expect("Instruction has no results")
    }

    /// Test if `inst` has any result values currently.
    pub fn has_results(&self, inst: Inst) -> bool {
        !self.results[inst].is_empty()
    }

    /// Return all the results of an instruction.
    pub fn inst_results(&self, inst: Inst) -> &[Value] {
        self.results[inst].as_slice(&self.value_lists)
    }

    /// Return all the results of an instruction as ValueList.
    pub fn inst_results_list(&self, inst: Inst) -> ValueList {
        self.results[inst]
    }

    /// Get the call signature of a direct or indirect call instruction.
    /// Returns `None` if `inst` is not a call instruction.
    pub fn call_signature(&self, inst: Inst) -> Option<SigRef> {
        match self.insts[inst].analyze_call(&self.value_lists) {
            CallInfo::NotACall => None,
            CallInfo::Direct(f, _) => Some(self.ext_funcs[f].signature),
            CallInfo::Indirect(s, _) => Some(s),
        }
    }

    /// Check if `inst` is a branch.
    pub fn analyze_branch(&self, inst: Inst) -> BranchInfo {
        self.insts[inst].analyze_branch(&self.value_lists)
    }

    /// Compute the type of an instruction result from opcode constraints and call signatures.
    ///
    /// This computes the same sequence of result types that `make_inst_results()` above would
    /// assign to the created result values, but it does not depend on `make_inst_results()` being
    /// called first.
    ///
    /// Returns `None` if asked about a result index that is too large.
    pub fn compute_result_type(
        &self,
        inst: Inst,
        result_idx: usize,
        ctrl_typevar: Type,
    ) -> Option<Type> {
        let constraints = self.insts[inst].opcode().constraints();
        let num_fixed_results = constraints.num_fixed_results();

        if result_idx < num_fixed_results {
            return Some(constraints.result_type(result_idx, ctrl_typevar));
        }

        // Not a fixed result, try to extract a return type from the call signature.
        self.call_signature(inst).and_then(|sigref| {
            self.signatures[sigref]
                .returns
                .get(result_idx - num_fixed_results)
                .map(|&arg| arg.value_type)
        })
    }

    /// Get the controlling type variable, or `INVALID` if `inst` isn't polymorphic.
    pub fn ctrl_typevar(&self, inst: Inst) -> Type {
        let constraints = self[inst].opcode().constraints();

        if !constraints.is_polymorphic() {
            types::INVALID
        } else if constraints.requires_typevar_operand() {
            // Not all instruction formats have a designated operand, but in that case
            // `requires_typevar_operand()` should never be true.
            self.value_type(
                self[inst]
                    .typevar_operand(&self.value_lists)
                    .expect("Instruction format doesn't have a designated operand, bad opcode."),
            )
        } else {
            self.value_type(self.first_result(inst))
        }
    }
}

/// Allow immutable access to instructions via indexing.
impl Index<Inst> for DataFlowGraph {
    type Output = InstructionData;

    fn index(&self, inst: Inst) -> &InstructionData {
        &self.insts[inst]
    }
}

/// Allow mutable access to instructions via indexing.
impl IndexMut<Inst> for DataFlowGraph {
    fn index_mut(&mut self, inst: Inst) -> &mut InstructionData {
        &mut self.insts[inst]
    }
}

/// basic blocks.
impl DataFlowGraph {
    /// Create a new basic block.
    pub fn make_block(&mut self) -> Block {
        self.blocks.push(BlockData::new())
    }

    /// Get the number of parameters on `block`.
    pub fn num_block_params(&self, block: Block) -> usize {
        self.blocks[block].params.len(&self.value_lists)
    }

    /// Get the parameters on `block`.
    pub fn block_params(&self, block: Block) -> &[Value] {
        self.blocks[block].params.as_slice(&self.value_lists)
    }

    /// Get the types of the parameters on `block`.
    pub fn block_param_types(&self, block: Block) -> impl Iterator<Item = Type> + '_ {
        self.block_params(block).iter().map(|&v| self.value_type(v))
    }

    /// Append a parameter with type `ty` to `block`.
    pub fn append_block_param(&mut self, block: Block, ty: Type) -> Value {
        let param = self.values.next_key();
        let num = self.blocks[block].params.push(param, &mut self.value_lists);
        debug_assert!(num <= u16::MAX as usize, "Too many parameters on block");
        self.make_value(ValueData::Param {
            ty,
            num: num as u16,
            block,
        })
    }

    /// Removes `val` from `block`'s parameters by swapping it with the last parameter on `block`.
    /// Returns the position of `val` before removal.
    ///
    /// *Important*: to ensure O(1) deletion, this method swaps the removed parameter with the
    /// last `block` parameter. This can disrupt all the branch instructions jumping to this
    /// `block` for which you have to change the branch argument order if necessary.
    ///
    /// Panics if `val` is not a block parameter.
    pub fn swap_remove_block_param(&mut self, val: Value) -> usize {
        let (block, num) =
            if let ValueData::Param { num, block, .. } = ValueData::from(self.values[val]) {
                (block, num)
            } else {
                panic!("{} must be a block parameter", val);
            };
        self.blocks[block]
            .params
            .swap_remove(num as usize, &mut self.value_lists);
        if let Some(last_arg_val) = self.blocks[block]
            .params
            .get(num as usize, &self.value_lists)
        {
            // We update the position of the old last arg.
            let mut last_arg_data = ValueData::from(self.values[last_arg_val]);
            if let ValueData::Param {
                num: ref mut old_num,
                ..
            } = &mut last_arg_data
            {
                *old_num = num;
                self.values[last_arg_val] = last_arg_data.into();
            } else {
                panic!("{} should be a Block parameter", last_arg_val);
            }
        }
        num as usize
    }

    /// Removes `val` from `block`'s parameters by a standard linear time list removal which
    /// preserves ordering. Also updates the values' data.
    pub fn remove_block_param(&mut self, val: Value) {
        let (block, num) =
            if let ValueData::Param { num, block, .. } = ValueData::from(self.values[val]) {
                (block, num)
            } else {
                panic!("{} must be a block parameter", val);
            };
        self.blocks[block]
            .params
            .remove(num as usize, &mut self.value_lists);
        for index in num..(self.num_block_params(block) as u16) {
            let packed = &mut self.values[self.blocks[block]
                .params
                .get(index as usize, &self.value_lists)
                .unwrap()];
            let mut data = ValueData::from(*packed);
            match &mut data {
                ValueData::Param { ref mut num, .. } => {
                    *num -= 1;
                    *packed = data.into();
                }
                _ => panic!(
                    "{} must be a block parameter",
                    self.blocks[block]
                        .params
                        .get(index as usize, &self.value_lists)
                        .unwrap()
                ),
            }
        }
    }

    /// Append an existing value to `block`'s parameters.
    ///
    /// The appended value can't already be attached to something else.
    ///
    /// In almost all cases, you should be using `append_block_param()` instead of this method.
    pub fn attach_block_param(&mut self, block: Block, param: Value) {
        debug_assert!(!self.value_is_attached(param));
        let num = self.blocks[block].params.push(param, &mut self.value_lists);
        debug_assert!(num <= u16::MAX as usize, "Too many parameters on block");
        let ty = self.value_type(param);
        self.values[param] = ValueData::Param {
            ty,
            num: num as u16,
            block,
        }
        .into();
    }

    /// Replace a block parameter with a new value of type `ty`.
    ///
    /// The `old_value` must be an attached block parameter. It is removed from its place in the list
    /// of parameters and replaced by a new value of type `new_type`. The new value gets the same
    /// position in the list, and other parameters are not disturbed.
    ///
    /// The old value is left detached, so it should probably be changed into something else.
    ///
    /// Returns the new value.
    pub fn replace_block_param(&mut self, old_value: Value, new_type: Type) -> Value {
        // Create new value identical to the old one except for the type.
        let (block, num) =
            if let ValueData::Param { num, block, .. } = ValueData::from(self.values[old_value]) {
                (block, num)
            } else {
                panic!("{} must be a block parameter", old_value);
            };
        let new_arg = self.make_value(ValueData::Param {
            ty: new_type,
            num,
            block,
        });

        self.blocks[block]
            .params
            .as_mut_slice(&mut self.value_lists)[num as usize] = new_arg;
        new_arg
    }

    /// Detach all the parameters from `block` and return them as a `ValueList`.
    ///
    /// This is a quite low-level operation. Sensible things to do with the detached block parameters
    /// is to put them back on the same block with `attach_block_param()` or change them into aliases
    /// with `change_to_alias()`.
    pub fn detach_block_params(&mut self, block: Block) -> ValueList {
        self.blocks[block].params.take()
    }
}

/// Contents of a basic block.
///
/// Parameters on a basic block are values that dominate everything in the block. All
/// branches to this block must provide matching arguments, and the arguments to the entry block must
/// match the function arguments.
#[derive(Clone, PartialEq, Hash)]
#[cfg_attr(feature = "enable-serde", derive(Serialize, Deserialize))]
struct BlockData {
    /// List of parameters to this block.
    params: ValueList,
}

impl BlockData {
    fn new() -> Self {
        Self {
            params: ValueList::new(),
        }
    }
}

/// Object that can display an instruction.
pub struct DisplayInst<'a>(&'a DataFlowGraph, Inst);

impl<'a> fmt::Display for DisplayInst<'a> {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        let dfg = self.0;
        let inst = self.1;

        if let Some((first, rest)) = dfg.inst_results(inst).split_first() {
            write!(f, "{}", first)?;
            for v in rest {
                write!(f, ", {}", v)?;
            }
            write!(f, " = ")?;
        }

        let typevar = dfg.ctrl_typevar(inst);
        if typevar.is_invalid() {
            write!(f, "{}", dfg[inst].opcode())?;
        } else {
            write!(f, "{}.{}", dfg[inst].opcode(), typevar)?;
        }
        write_operands(f, dfg, inst)
    }
}

/// Parser routines. These routines should not be used outside the parser.
impl DataFlowGraph {
    /// Set the type of a value. This is only for use in the parser, which needs
    /// to create invalid values for index padding which may be reassigned later.
    #[cold]
    fn set_value_type_for_parser(&mut self, v: Value, t: Type) {
        assert_eq!(
            self.value_type(v),
            types::INVALID,
            "this function is only for assigning types to previously invalid values"
        );
        self.values[v].set_type(t);
    }

    /// Check that the given concrete `Type` has been defined in the function.
    pub fn check_dynamic_type(&mut self, ty: Type) -> Option<Type> {
        debug_assert!(ty.is_dynamic_vector());
        if self
            .dynamic_types
            .values()
            .any(|dyn_ty_data| dyn_ty_data.concrete().unwrap() == ty)
        {
            Some(ty)
        } else {
            None
        }
    }

    /// Create result values for `inst`, reusing the provided detached values.
    /// This is similar to `make_inst_results_reusing` except it's only for use
    /// in the parser, which needs to reuse previously invalid values.
    #[cold]
    pub fn make_inst_results_for_parser(
        &mut self,
        inst: Inst,
        ctrl_typevar: Type,
        reuse: &[Value],
    ) -> usize {
        // Get the call signature if this is a function call.
        if let Some(sig) = self.call_signature(inst) {
            assert_eq!(
                self.insts[inst].opcode().constraints().num_fixed_results(),
                0
            );
            for res_idx in 0..self.signatures[sig].returns.len() {
                let ty = self.signatures[sig].returns[res_idx].value_type;
                if let Some(v) = reuse.get(res_idx) {
                    self.set_value_type_for_parser(*v, ty);
                }
            }
        } else {
            let constraints = self.insts[inst].opcode().constraints();
            for res_idx in 0..constraints.num_fixed_results() {
                let ty = constraints.result_type(res_idx, ctrl_typevar);
                if ty.is_dynamic_vector() {
                    self.check_dynamic_type(ty)
                        .unwrap_or_else(|| panic!("Use of undeclared dynamic type: {}", ty));
                }
                if let Some(v) = reuse.get(res_idx) {
                    self.set_value_type_for_parser(*v, ty);
                }
            }
        }

        self.make_inst_results_reusing(inst, ctrl_typevar, reuse.iter().map(|x| Some(*x)))
    }

    /// Similar to `append_block_param`, append a parameter with type `ty` to
    /// `block`, but using value `val`. This is only for use by the parser to
    /// create parameters with specific values.
    #[cold]
    pub fn append_block_param_for_parser(&mut self, block: Block, ty: Type, val: Value) {
        let num = self.blocks[block].params.push(val, &mut self.value_lists);
        assert!(num <= u16::MAX as usize, "Too many parameters on block");
        self.values[val] = ValueData::Param {
            ty,
            num: num as u16,
            block,
        }
        .into();
    }

    /// Create a new value alias. This is only for use by the parser to create
    /// aliases with specific values, and the printer for testing.
    #[cold]
    pub fn make_value_alias_for_serialization(&mut self, src: Value, dest: Value) {
        assert_ne!(src, Value::reserved_value());
        assert_ne!(dest, Value::reserved_value());

        let ty = if self.values.is_valid(src) {
            self.value_type(src)
        } else {
            // As a special case, if we can't resolve the aliasee yet, use INVALID
            // temporarily. It will be resolved later in parsing.
            types::INVALID
        };
        let data = ValueData::Alias { ty, original: src };
        self.values[dest] = data.into();
    }

    /// If `v` is already defined as an alias, return its destination value.
    /// Otherwise return None. This allows the parser to coalesce identical
    /// alias definitions, and the printer to identify an alias's immediate target.
    #[cold]
    pub fn value_alias_dest_for_serialization(&self, v: Value) -> Option<Value> {
        if let ValueData::Alias { original, .. } = ValueData::from(self.values[v]) {
            Some(original)
        } else {
            None
        }
    }

    /// Compute the type of an alias. This is only for use in the parser.
    /// Returns false if an alias cycle was encountered.
    #[cold]
    pub fn set_alias_type_for_parser(&mut self, v: Value) -> bool {
        if let Some(resolved) = maybe_resolve_aliases(&self.values, v) {
            let old_ty = self.value_type(v);
            let new_ty = self.value_type(resolved);
            if old_ty == types::INVALID {
                self.set_value_type_for_parser(v, new_ty);
            } else {
                assert_eq!(old_ty, new_ty);
            }
            true
        } else {
            false
        }
    }

    /// Create an invalid value, to pad the index space. This is only for use by
    /// the parser to pad out the value index space.
    #[cold]
    pub fn make_invalid_value_for_parser(&mut self) {
        let data = ValueData::Alias {
            ty: types::INVALID,
            original: Value::reserved_value(),
        };
        self.make_value(data);
    }

    /// Check if a value reference is valid, while being aware of aliases which
    /// may be unresolved while parsing.
    #[cold]
    pub fn value_is_valid_for_parser(&self, v: Value) -> bool {
        if !self.value_is_valid(v) {
            return false;
        }
        if let ValueData::Alias { ty, .. } = ValueData::from(self.values[v]) {
            ty != types::INVALID
        } else {
            true
        }
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use crate::cursor::{Cursor, FuncCursor};
    use crate::ir::types;
    use crate::ir::{Function, InstructionData, Opcode, TrapCode};
    use alloc::string::ToString;

    #[test]
    fn make_inst() {
        let mut dfg = DataFlowGraph::new();

        let idata = InstructionData::UnaryImm {
            opcode: Opcode::Iconst,
            imm: 0.into(),
        };
        let inst = dfg.make_inst(idata);

        dfg.make_inst_results(inst, types::I32);
        assert_eq!(inst.to_string(), "inst0");
        assert_eq!(dfg.display_inst(inst).to_string(), "v0 = iconst.i32 0");

        // Immutable reference resolution.
        {
            let immdfg = &dfg;
            let ins = &immdfg[inst];
            assert_eq!(ins.opcode(), Opcode::Iconst);
        }

        // Results.
        let val = dfg.first_result(inst);
        assert_eq!(dfg.inst_results(inst), &[val]);

        assert_eq!(dfg.value_def(val), ValueDef::Result(inst, 0));
        assert_eq!(dfg.value_type(val), types::I32);

        // Replacing results.
        assert!(dfg.value_is_attached(val));
        let v2 = dfg.replace_result(val, types::F64);
        assert!(!dfg.value_is_attached(val));
        assert!(dfg.value_is_attached(v2));
        assert_eq!(dfg.inst_results(inst), &[v2]);
        assert_eq!(dfg.value_def(v2), ValueDef::Result(inst, 0));
        assert_eq!(dfg.value_type(v2), types::F64);
    }

    #[test]
    fn no_results() {
        let mut dfg = DataFlowGraph::new();

        let idata = InstructionData::Trap {
            opcode: Opcode::Trap,
            code: TrapCode::User(0),
        };
        let inst = dfg.make_inst(idata);
        assert_eq!(dfg.display_inst(inst).to_string(), "trap user0");

        // Result slice should be empty.
        assert_eq!(dfg.inst_results(inst), &[]);
    }

    #[test]
    fn block() {
        let mut dfg = DataFlowGraph::new();

        let block = dfg.make_block();
        assert_eq!(block.to_string(), "block0");
        assert_eq!(dfg.num_block_params(block), 0);
        assert_eq!(dfg.block_params(block), &[]);
        assert!(dfg.detach_block_params(block).is_empty());
        assert_eq!(dfg.num_block_params(block), 0);
        assert_eq!(dfg.block_params(block), &[]);

        let arg1 = dfg.append_block_param(block, types::F32);
        assert_eq!(arg1.to_string(), "v0");
        assert_eq!(dfg.num_block_params(block), 1);
        assert_eq!(dfg.block_params(block), &[arg1]);

        let arg2 = dfg.append_block_param(block, types::I16);
        assert_eq!(arg2.to_string(), "v1");
        assert_eq!(dfg.num_block_params(block), 2);
        assert_eq!(dfg.block_params(block), &[arg1, arg2]);

        assert_eq!(dfg.value_def(arg1), ValueDef::Param(block, 0));
        assert_eq!(dfg.value_def(arg2), ValueDef::Param(block, 1));
        assert_eq!(dfg.value_type(arg1), types::F32);
        assert_eq!(dfg.value_type(arg2), types::I16);

        // Swap the two block parameters.
        let vlist = dfg.detach_block_params(block);
        assert_eq!(dfg.num_block_params(block), 0);
        assert_eq!(dfg.block_params(block), &[]);
        assert_eq!(vlist.as_slice(&dfg.value_lists), &[arg1, arg2]);
        dfg.attach_block_param(block, arg2);
        let arg3 = dfg.append_block_param(block, types::I32);
        dfg.attach_block_param(block, arg1);
        assert_eq!(dfg.block_params(block), &[arg2, arg3, arg1]);
    }

    #[test]
    fn replace_block_params() {
        let mut dfg = DataFlowGraph::new();

        let block = dfg.make_block();
        let arg1 = dfg.append_block_param(block, types::F32);

        let new1 = dfg.replace_block_param(arg1, types::I64);
        assert_eq!(dfg.value_type(arg1), types::F32);
        assert_eq!(dfg.value_type(new1), types::I64);
        assert_eq!(dfg.block_params(block), &[new1]);

        dfg.attach_block_param(block, arg1);
        assert_eq!(dfg.block_params(block), &[new1, arg1]);

        let new2 = dfg.replace_block_param(arg1, types::I8);
        assert_eq!(dfg.value_type(arg1), types::F32);
        assert_eq!(dfg.value_type(new2), types::I8);
        assert_eq!(dfg.block_params(block), &[new1, new2]);

        dfg.attach_block_param(block, arg1);
        assert_eq!(dfg.block_params(block), &[new1, new2, arg1]);

        let new3 = dfg.replace_block_param(new2, types::I16);
        assert_eq!(dfg.value_type(new1), types::I64);
        assert_eq!(dfg.value_type(new2), types::I8);
        assert_eq!(dfg.value_type(new3), types::I16);
        assert_eq!(dfg.block_params(block), &[new1, new3, arg1]);
    }

    #[test]
    fn swap_remove_block_params() {
        let mut dfg = DataFlowGraph::new();

        let block = dfg.make_block();
        let arg1 = dfg.append_block_param(block, types::F32);
        let arg2 = dfg.append_block_param(block, types::F32);
        let arg3 = dfg.append_block_param(block, types::F32);
        assert_eq!(dfg.block_params(block), &[arg1, arg2, arg3]);

        dfg.swap_remove_block_param(arg1);
        assert_eq!(dfg.value_is_attached(arg1), false);
        assert_eq!(dfg.value_is_attached(arg2), true);
        assert_eq!(dfg.value_is_attached(arg3), true);
        assert_eq!(dfg.block_params(block), &[arg3, arg2]);
        dfg.swap_remove_block_param(arg2);
        assert_eq!(dfg.value_is_attached(arg2), false);
        assert_eq!(dfg.value_is_attached(arg3), true);
        assert_eq!(dfg.block_params(block), &[arg3]);
        dfg.swap_remove_block_param(arg3);
        assert_eq!(dfg.value_is_attached(arg3), false);
        assert_eq!(dfg.block_params(block), &[]);
    }

    #[test]
    fn aliases() {
        use crate::ir::InstBuilder;

        let mut func = Function::new();
        let block0 = func.dfg.make_block();
        let mut pos = FuncCursor::new(&mut func);
        pos.insert_block(block0);

        // Build a little test program.
        let v1 = pos.ins().iconst(types::I32, 42);

        // Make sure we can resolve value aliases even when values is empty.
        assert_eq!(pos.func.dfg.resolve_aliases(v1), v1);

        let arg0 = pos.func.dfg.append_block_param(block0, types::I32);
        let (s, c) = pos.ins().iadd_ifcout(v1, arg0);
        let iadd = match pos.func.dfg.value_def(s) {
            ValueDef::Result(i, 0) => i,
            _ => panic!(),
        };

        // Remove `c` from the result list.
        pos.func.dfg.clear_results(iadd);
        pos.func.dfg.attach_result(iadd, s);

        // Replace `iadd_ifcout` with a normal `iadd` and an `ifcmp`.
        pos.func.dfg.replace(iadd).iadd(v1, arg0);
        let c2 = pos.ins().ifcmp(s, v1);
        pos.func.dfg.change_to_alias(c, c2);

        assert_eq!(pos.func.dfg.resolve_aliases(c2), c2);
        assert_eq!(pos.func.dfg.resolve_aliases(c), c2);

        // Make a copy of the alias.
        let c3 = pos.ins().copy(c);
        // This does not see through copies.
        assert_eq!(pos.func.dfg.resolve_aliases(c3), c3);
    }
}