1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
//! A private parser implementation of IPv4 and IPv6 network addresses.
//!
//! The existing `std::net::parser` module cannot be extended because it
//! is private. It is copied and extended here with methods for parsing
//! IP network addresses.

use std::error::Error;
use std::fmt;
use std::net::{Ipv4Addr, Ipv6Addr};
use std::str::FromStr;

use ipnet::{IpNet, Ipv4Net, Ipv6Net};

pub struct Parser<'a> {
    // parsing as ASCII, so can use byte array
    s: &'a [u8],
    pos: usize,
}

impl<'a> Parser<'a> {
    fn new(s: &'a str) -> Parser<'a> {
        Parser {
            s: s.as_bytes(),
            pos: 0,
        }
    }

    fn is_eof(&self) -> bool {
        self.pos == self.s.len()
    }

    // Commit only if parser returns Some
    fn read_atomically<T, F>(&mut self, cb: F) -> Option<T> where
        F: FnOnce(&mut Parser) -> Option<T>,
    {
        let pos = self.pos;
        let r = cb(self);
        if r.is_none() {
            self.pos = pos;
        }
        r
    }

    // Commit only if parser read till EOF
    fn read_till_eof<T, F>(&mut self, cb: F) -> Option<T> where
        F: FnOnce(&mut Parser) -> Option<T>,
    {
        self.read_atomically(move |p| {
            match cb(p) {
                Some(x) => if p.is_eof() {Some(x)} else {None},
                None => None,
            }
        })
    }

    // Return result of first successful parser
    fn read_or<T>(&mut self, parsers: &mut [Box<dyn FnMut(&mut Parser) -> Option<T> + 'static>])
               -> Option<T> {
        for pf in parsers {
            if let Some(r) = self.read_atomically(|p: &mut Parser| pf(p)) {
                return Some(r);
            }
        }
        None
    }

    // Apply 3 parsers sequentially
    fn read_seq_3<A, B, C, PA, PB, PC>(&mut self,
                                       pa: PA,
                                       pb: PB,
                                       pc: PC)
                                       -> Option<(A, B, C)> where
        PA: FnOnce(&mut Parser) -> Option<A>,
        PB: FnOnce(&mut Parser) -> Option<B>,
        PC: FnOnce(&mut Parser) -> Option<C>,
    {
        self.read_atomically(move |p| {
            let a = pa(p);
            let b = if a.is_some() { pb(p) } else { None };
            let c = if b.is_some() { pc(p) } else { None };
            match (a, b, c) {
                (Some(a), Some(b), Some(c)) => Some((a, b, c)),
                _ => None
            }
        })
    }

    // Read next char
    fn read_char(&mut self) -> Option<char> {
        if self.is_eof() {
            None
        } else {
            let r = self.s[self.pos] as char;
            self.pos += 1;
            Some(r)
        }
    }

    // Return char and advance iff next char is equal to requested
    fn read_given_char(&mut self, c: char) -> Option<char> {
        self.read_atomically(|p| {
            match p.read_char() {
                Some(next) if next == c => Some(next),
                _ => None,
            }
        })
    }

    // Read digit
    fn read_digit(&mut self, radix: u8) -> Option<u8> {
        fn parse_digit(c: char, radix: u8) -> Option<u8> {
            let c = c as u8;
            // assuming radix is either 10 or 16
            if c >= b'0' && c <= b'9' {
                Some(c - b'0')
            } else if radix > 10 && c >= b'a' && c < b'a' + (radix - 10) {
                Some(c - b'a' + 10)
            } else if radix > 10 && c >= b'A' && c < b'A' + (radix - 10) {
                Some(c - b'A' + 10)
            } else {
                None
            }
        }

        self.read_atomically(|p| {
            p.read_char().and_then(|c| parse_digit(c, radix))
        })
    }

    fn read_number_impl(&mut self, radix: u8, max_digits: u32, upto: u32) -> Option<u32> {
        let mut r = 0;
        let mut digit_count = 0;
        loop {
            match self.read_digit(radix) {
                Some(d) => {
                    r = r * (radix as u32) + (d as u32);
                    digit_count += 1;
                    if digit_count > max_digits || r >= upto {
                        return None
                    }
                }
                None => {
                    if digit_count == 0 {
                        return None
                    } else {
                        return Some(r)
                    }
                }
            };
        }
    }

    // Read number, failing if max_digits of number value exceeded
    fn read_number(&mut self, radix: u8, max_digits: u32, upto: u32) -> Option<u32> {
        self.read_atomically(|p| p.read_number_impl(radix, max_digits, upto))
    }

    fn read_ipv4_addr_impl(&mut self) -> Option<Ipv4Addr> {
        let mut bs = [0; 4];
        let mut i = 0;
        while i < 4 {
            if i != 0 && self.read_given_char('.').is_none() {
                return None;
            }

            let octet = self.read_number(10, 3, 0x100).map(|n| n as u8);
            match octet {
                Some(d) => bs[i] = d,
                None => return None,
            };
            i += 1;
        }
        Some(Ipv4Addr::new(bs[0], bs[1], bs[2], bs[3]))
    }

    // Read IPv4 address
    fn read_ipv4_addr(&mut self) -> Option<Ipv4Addr> {
        self.read_atomically(|p| p.read_ipv4_addr_impl())
    }

    fn read_ipv6_addr_impl(&mut self) -> Option<Ipv6Addr> {
        fn ipv6_addr_from_head_tail(head: &[u16], tail: &[u16]) -> Ipv6Addr {
            assert!(head.len() + tail.len() <= 8);
            let mut gs = [0; 8];
            gs[..head.len()].copy_from_slice(head);
            gs[(8 - tail.len()) .. 8].copy_from_slice(tail);
            Ipv6Addr::new(gs[0], gs[1], gs[2], gs[3], gs[4], gs[5], gs[6], gs[7])
        }

        fn read_groups(p: &mut Parser, groups: &mut [u16; 8], limit: usize)
                       -> (usize, bool) {
            let mut i = 0;
            while i < limit {
                if i < limit - 1 {
                    let ipv4 = p.read_atomically(|p| {
                        if i == 0 || p.read_given_char(':').is_some() {
                            p.read_ipv4_addr()
                        } else {
                            None
                        }
                    });
                    if let Some(v4_addr) = ipv4 {
                        let octets = v4_addr.octets();
                        groups[i + 0] = ((octets[0] as u16) << 8) | (octets[1] as u16);
                        groups[i + 1] = ((octets[2] as u16) << 8) | (octets[3] as u16);
                        return (i + 2, true);
                    }
                }

                let group = p.read_atomically(|p| {
                    if i == 0 || p.read_given_char(':').is_some() {
                        p.read_number(16, 4, 0x10000).map(|n| n as u16)
                    } else {
                        None
                    }
                });
                match group {
                    Some(g) => groups[i] = g,
                    None => return (i, false)
                }
                i += 1;
            }
            (i, false)
        }

        let mut head = [0; 8];
        let (head_size, head_ipv4) = read_groups(self, &mut head, 8);

        if head_size == 8 {
            return Some(Ipv6Addr::new(
                head[0], head[1], head[2], head[3],
                head[4], head[5], head[6], head[7]))
        }

        // IPv4 part is not allowed before `::`
        if head_ipv4 {
            return None
        }

        // read `::` if previous code parsed less than 8 groups
        if !self.read_given_char(':').is_some() || !self.read_given_char(':').is_some() {
            return None;
        }

        let mut tail = [0; 8];
        let (tail_size, _) = read_groups(self, &mut tail, 8 - head_size);
        Some(ipv6_addr_from_head_tail(&head[..head_size], &tail[..tail_size]))
    }

    fn read_ipv6_addr(&mut self) -> Option<Ipv6Addr> {
        self.read_atomically(|p| p.read_ipv6_addr_impl())
    }
    
    /* Additions for IpNet below. */

    // Read IPv4 network
    fn read_ipv4_net(&mut self) -> Option<Ipv4Net> {
        let ip_addr = |p: &mut Parser| p.read_ipv4_addr();
        let slash = |p: &mut Parser| p.read_given_char('/');
        let prefix_len = |p: &mut Parser| {
            p.read_number(10, 2, 33).map(|n| n as u8)
        };

        self.read_seq_3(ip_addr, slash, prefix_len).map(|t| {
            let (ip, _, prefix_len): (Ipv4Addr, char, u8) = t;
            Ipv4Net::new(ip, prefix_len).unwrap()
        })
    }

    // Read Ipv6 network
    fn read_ipv6_net(&mut self) -> Option<Ipv6Net> {
        let ip_addr = |p: &mut Parser| p.read_ipv6_addr();
        let slash = |p: &mut Parser| p.read_given_char('/');
        let prefix_len = |p: &mut Parser| {
            p.read_number(10, 3, 129).map(|n| n as u8)
        };

        self.read_seq_3(ip_addr, slash, prefix_len).map(|t| {
            let (ip, _, prefix_len): (Ipv6Addr, char, u8) = t;
            Ipv6Net::new(ip, prefix_len).unwrap()
        })
    }

    fn read_ip_net(&mut self) -> Option<IpNet> {
        let ipv4_net = |p: &mut Parser| p.read_ipv4_net().map(IpNet::V4);
        let ipv6_net = |p: &mut Parser| p.read_ipv6_net().map(IpNet::V6);
        self.read_or(&mut [Box::new(ipv4_net), Box::new(ipv6_net)])
    }

    /* Additions for IpNet above. */
}

/* Additions for IpNet below. */

impl FromStr for IpNet {
    type Err = AddrParseError;
    fn from_str(s: &str) -> Result<IpNet, AddrParseError> {
        match Parser::new(s).read_till_eof(|p| p.read_ip_net()) {
            Some(s) => Ok(s),
            None => Err(AddrParseError(()))
        }
    }
}

impl FromStr for Ipv4Net {
    type Err = AddrParseError;
    fn from_str(s: &str) -> Result<Ipv4Net, AddrParseError> {
        match Parser::new(s).read_till_eof(|p| p.read_ipv4_net()) {
            Some(s) => Ok(s),
            None => Err(AddrParseError(()))
        }
    }
}

impl FromStr for Ipv6Net {
    type Err = AddrParseError;
    fn from_str(s: &str) -> Result<Ipv6Net, AddrParseError> {
        match Parser::new(s).read_till_eof(|p| p.read_ipv6_net()) {
            Some(s) => Ok(s),
            None => Err(AddrParseError(()))
        }
    }
}

/* Additions for IpNet above. */

/// An error which can be returned when parsing an IP network address.
///
/// This error is used as the error type for the [`FromStr`] implementation for
/// [`IpNet`], [`Ipv4Net`], and [`Ipv6Net`].
///
/// [`FromStr`]: https://doc.rust-lang.org/std/str/trait.FromStr.html
/// [`IpNet`]: enum.IpNet.html
/// [`Ipv4Net`]: struct.Ipv4Net.html
/// [`Ipv6Net`]: struct.Ipv6Net.html
#[derive(Debug, Clone, PartialEq, Eq)]
pub struct AddrParseError(());

impl fmt::Display for AddrParseError {
    fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
        fmt.write_str("invalid IP address syntax")
    }
}

impl Error for AddrParseError {}