1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
use super::size_hint;

/// See [`multizip`] for more information.
#[derive(Clone, Debug)]
#[must_use = "iterator adaptors are lazy and do nothing unless consumed"]
pub struct Zip<T> {
    t: T,
}

/// An iterator that generalizes *.zip()* and allows running multiple iterators in lockstep.
///
/// The iterator `Zip<(I, J, ..., M)>` is formed from a tuple of iterators (or values that
/// implement [`IntoIterator`]) and yields elements
/// until any of the subiterators yields `None`.
///
/// The iterator element type is a tuple like like `(A, B, ..., E)` where `A` to `E` are the
/// element types of the subiterator.
///
/// **Note:** The result of this macro is a value of a named type (`Zip<(I, J,
/// ..)>` of each component iterator `I, J, ...`) if each component iterator is
/// nameable.
///
/// Prefer [`izip!()`] over `multizip` for the performance benefits of using the
/// standard library `.zip()`. Prefer `multizip` if a nameable type is needed.
///
/// ```
/// use itertools::multizip;
///
/// // iterate over three sequences side-by-side
/// let mut results = [0, 0, 0, 0];
/// let inputs = [3, 7, 9, 6];
///
/// for (r, index, input) in multizip((&mut results, 0..10, &inputs)) {
///     *r = index * 10 + input;
/// }
///
/// assert_eq!(results, [0 + 3, 10 + 7, 29, 36]);
/// ```
pub fn multizip<T, U>(t: U) -> Zip<T>
    where Zip<T>: From<U>,
          Zip<T>: Iterator,
{
    Zip::from(t)
}

macro_rules! impl_zip_iter {
    ($($B:ident),*) => (
        #[allow(non_snake_case)]
        impl<$($B: IntoIterator),*> From<($($B,)*)> for Zip<($($B::IntoIter,)*)> {
            fn from(t: ($($B,)*)) -> Self {
                let ($($B,)*) = t;
                Zip { t: ($($B.into_iter(),)*) }
            }
        }

        #[allow(non_snake_case)]
        #[allow(unused_assignments)]
        impl<$($B),*> Iterator for Zip<($($B,)*)>
            where
            $(
                $B: Iterator,
            )*
        {
            type Item = ($($B::Item,)*);

            fn next(&mut self) -> Option<Self::Item>
            {
                let ($(ref mut $B,)*) = self.t;

                // NOTE: Just like iter::Zip, we check the iterators
                // for None in order. We may finish unevenly (some
                // iterators gave n + 1 elements, some only n).
                $(
                    let $B = match $B.next() {
                        None => return None,
                        Some(elt) => elt
                    };
                )*
                Some(($($B,)*))
            }

            fn size_hint(&self) -> (usize, Option<usize>)
            {
                let sh = (::std::usize::MAX, None);
                let ($(ref $B,)*) = self.t;
                $(
                    let sh = size_hint::min($B.size_hint(), sh);
                )*
                sh
            }
        }

        #[allow(non_snake_case)]
        impl<$($B),*> ExactSizeIterator for Zip<($($B,)*)> where
            $(
                $B: ExactSizeIterator,
            )*
        { }

        #[allow(non_snake_case)]
        impl<$($B),*> DoubleEndedIterator for Zip<($($B,)*)> where
            $(
                $B: DoubleEndedIterator + ExactSizeIterator,
            )*
        {
            #[inline]
            fn next_back(&mut self) -> Option<Self::Item> {
                let ($(ref mut $B,)*) = self.t;
                let size = *[$( $B.len(), )*].iter().min().unwrap();

                $(
                    if $B.len() != size {
                        for _ in 0..$B.len() - size { $B.next_back(); }
                    }
                )*

                match ($($B.next_back(),)*) {
                    ($(Some($B),)*) => Some(($($B,)*)),
                    _ => None,
                }
            }
        }
    );
}

impl_zip_iter!(A);
impl_zip_iter!(A, B);
impl_zip_iter!(A, B, C);
impl_zip_iter!(A, B, C, D);
impl_zip_iter!(A, B, C, D, E);
impl_zip_iter!(A, B, C, D, E, F);
impl_zip_iter!(A, B, C, D, E, F, G);
impl_zip_iter!(A, B, C, D, E, F, G, H);
impl_zip_iter!(A, B, C, D, E, F, G, H, I);
impl_zip_iter!(A, B, C, D, E, F, G, H, I, J);
impl_zip_iter!(A, B, C, D, E, F, G, H, I, J, K);
impl_zip_iter!(A, B, C, D, E, F, G, H, I, J, K, L);