1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562
use crate::memmem::{rarebytes::RareNeedleBytes, NeedleInfo};
mod fallback;
#[cfg(all(target_arch = "x86_64", memchr_runtime_simd))]
mod genericsimd;
#[cfg(all(not(miri), target_arch = "x86_64", memchr_runtime_simd))]
mod x86;
/// The maximum frequency rank permitted for the fallback prefilter. If the
/// rarest byte in the needle has a frequency rank above this value, then no
/// prefilter is used if the fallback prefilter would otherwise be selected.
const MAX_FALLBACK_RANK: usize = 250;
/// A combination of prefilter effectiveness state, the prefilter function and
/// the needle info required to run a prefilter.
///
/// For the most part, these are grouped into a single type for convenience,
/// instead of needing to pass around all three as distinct function
/// parameters.
pub(crate) struct Pre<'a> {
/// State that tracks the effectiveness of a prefilter.
pub(crate) state: &'a mut PrefilterState,
/// The actual prefilter function.
pub(crate) prefn: PrefilterFn,
/// Information about a needle, such as its RK hash and rare byte offsets.
pub(crate) ninfo: &'a NeedleInfo,
}
impl<'a> Pre<'a> {
/// Call this prefilter on the given haystack with the given needle.
#[inline(always)]
pub(crate) fn call(
&mut self,
haystack: &[u8],
needle: &[u8],
) -> Option<usize> {
self.prefn.call(self.state, self.ninfo, haystack, needle)
}
/// Return true if and only if this prefilter should be used.
#[inline(always)]
pub(crate) fn should_call(&mut self) -> bool {
self.state.is_effective()
}
}
/// A prefilter function.
///
/// A prefilter function describes both forward and reverse searches.
/// (Although, we don't currently implement prefilters for reverse searching.)
/// In the case of a forward search, the position returned corresponds to
/// the starting offset of a match (confirmed or possible). Its minimum
/// value is `0`, and its maximum value is `haystack.len() - 1`. In the case
/// of a reverse search, the position returned corresponds to the position
/// immediately after a match (confirmed or possible). Its minimum value is `1`
/// and its maximum value is `haystack.len()`.
///
/// In both cases, the position returned is the starting (or ending) point of a
/// _possible_ match. That is, returning a false positive is okay. A prefilter,
/// however, must never return any false negatives. That is, if a match exists
/// at a particular position `i`, then a prefilter _must_ return that position.
/// It cannot skip past it.
///
/// # Safety
///
/// A prefilter function is not safe to create, since not all prefilters are
/// safe to call in all contexts. (e.g., A prefilter that uses AVX instructions
/// may only be called on x86_64 CPUs with the relevant AVX feature enabled.)
/// Thus, callers must ensure that when a prefilter function is created that it
/// is safe to call for the current environment.
#[derive(Clone, Copy)]
pub(crate) struct PrefilterFn(PrefilterFnTy);
/// The type of a prefilter function. All prefilters must satisfy this
/// signature.
///
/// Using a function pointer like this does inhibit inlining, but it does
/// eliminate branching and the extra costs associated with copying a larger
/// enum. Note also, that using Box<dyn SomePrefilterTrait> can't really work
/// here, since we want to work in contexts that don't have dynamic memory
/// allocation. Moreover, in the default configuration of this crate on x86_64
/// CPUs released in the past ~decade, we will use an AVX2-optimized prefilter,
/// which generally won't be inlineable into the surrounding code anyway.
/// (Unless AVX2 is enabled at compile time, but this is typically rare, since
/// it produces a non-portable binary.)
pub(crate) type PrefilterFnTy = unsafe fn(
prestate: &mut PrefilterState,
ninfo: &NeedleInfo,
haystack: &[u8],
needle: &[u8],
) -> Option<usize>;
impl PrefilterFn {
/// Create a new prefilter function from the function pointer given.
///
/// # Safety
///
/// Callers must ensure that the given prefilter function is safe to call
/// for all inputs in the current environment. For example, if the given
/// prefilter function uses AVX instructions, then the caller must ensure
/// that the appropriate AVX CPU features are enabled.
pub(crate) unsafe fn new(prefn: PrefilterFnTy) -> PrefilterFn {
PrefilterFn(prefn)
}
/// Call the underlying prefilter function with the given arguments.
pub fn call(
self,
prestate: &mut PrefilterState,
ninfo: &NeedleInfo,
haystack: &[u8],
needle: &[u8],
) -> Option<usize> {
// SAFETY: Callers have the burden of ensuring that a prefilter
// function is safe to call for all inputs in the current environment.
unsafe { (self.0)(prestate, ninfo, haystack, needle) }
}
}
impl core::fmt::Debug for PrefilterFn {
fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
"<prefilter-fn(...)>".fmt(f)
}
}
/// Prefilter controls whether heuristics are used to accelerate searching.
///
/// A prefilter refers to the idea of detecting candidate matches very quickly,
/// and then confirming whether those candidates are full matches. This
/// idea can be quite effective since it's often the case that looking for
/// candidates can be a lot faster than running a complete substring search
/// over the entire input. Namely, looking for candidates can be done with
/// extremely fast vectorized code.
///
/// The downside of a prefilter is that it assumes false positives (which are
/// candidates generated by a prefilter that aren't matches) are somewhat rare
/// relative to the frequency of full matches. That is, if a lot of false
/// positives are generated, then it's possible for search time to be worse
/// than if the prefilter wasn't enabled in the first place.
///
/// Another downside of a prefilter is that it can result in highly variable
/// performance, where some cases are extraordinarily fast and others aren't.
/// Typically, variable performance isn't a problem, but it may be for your use
/// case.
///
/// The use of prefilters in this implementation does use a heuristic to detect
/// when a prefilter might not be carrying its weight, and will dynamically
/// disable its use. Nevertheless, this configuration option gives callers
/// the ability to disable prefilters if you have knowledge that they won't be
/// useful.
#[derive(Clone, Copy, Debug)]
#[non_exhaustive]
pub enum Prefilter {
/// Never used a prefilter in substring search.
None,
/// Automatically detect whether a heuristic prefilter should be used. If
/// it is used, then heuristics will be used to dynamically disable the
/// prefilter if it is believed to not be carrying its weight.
Auto,
}
impl Default for Prefilter {
fn default() -> Prefilter {
Prefilter::Auto
}
}
impl Prefilter {
pub(crate) fn is_none(&self) -> bool {
match *self {
Prefilter::None => true,
_ => false,
}
}
}
/// PrefilterState tracks state associated with the effectiveness of a
/// prefilter. It is used to track how many bytes, on average, are skipped by
/// the prefilter. If this average dips below a certain threshold over time,
/// then the state renders the prefilter inert and stops using it.
///
/// A prefilter state should be created for each search. (Where creating an
/// iterator is treated as a single search.) A prefilter state should only be
/// created from a `Freqy`. e.g., An inert `Freqy` will produce an inert
/// `PrefilterState`.
#[derive(Clone, Debug)]
pub(crate) struct PrefilterState {
/// The number of skips that has been executed. This is always 1 greater
/// than the actual number of skips. The special sentinel value of 0
/// indicates that the prefilter is inert. This is useful to avoid
/// additional checks to determine whether the prefilter is still
/// "effective." Once a prefilter becomes inert, it should no longer be
/// used (according to our heuristics).
skips: u32,
/// The total number of bytes that have been skipped.
skipped: u32,
}
impl PrefilterState {
/// The minimum number of skip attempts to try before considering whether
/// a prefilter is effective or not.
const MIN_SKIPS: u32 = 50;
/// The minimum amount of bytes that skipping must average.
///
/// This value was chosen based on varying it and checking
/// the microbenchmarks. In particular, this can impact the
/// pathological/repeated-{huge,small} benchmarks quite a bit if it's set
/// too low.
const MIN_SKIP_BYTES: u32 = 8;
/// Create a fresh prefilter state.
pub(crate) fn new() -> PrefilterState {
PrefilterState { skips: 1, skipped: 0 }
}
/// Create a fresh prefilter state that is always inert.
pub(crate) fn inert() -> PrefilterState {
PrefilterState { skips: 0, skipped: 0 }
}
/// Update this state with the number of bytes skipped on the last
/// invocation of the prefilter.
#[inline]
pub(crate) fn update(&mut self, skipped: usize) {
self.skips = self.skips.saturating_add(1);
// We need to do this dance since it's technically possible for
// `skipped` to overflow a `u32`. (And we use a `u32` to reduce the
// size of a prefilter state.)
if skipped > core::u32::MAX as usize {
self.skipped = core::u32::MAX;
} else {
self.skipped = self.skipped.saturating_add(skipped as u32);
}
}
/// Return true if and only if this state indicates that a prefilter is
/// still effective.
#[inline]
pub(crate) fn is_effective(&mut self) -> bool {
if self.is_inert() {
return false;
}
if self.skips() < PrefilterState::MIN_SKIPS {
return true;
}
if self.skipped >= PrefilterState::MIN_SKIP_BYTES * self.skips() {
return true;
}
// We're inert.
self.skips = 0;
false
}
#[inline]
fn is_inert(&self) -> bool {
self.skips == 0
}
#[inline]
fn skips(&self) -> u32 {
self.skips.saturating_sub(1)
}
}
/// Determine which prefilter function, if any, to use.
///
/// This only applies to x86_64 when runtime SIMD detection is enabled (which
/// is the default). In general, we try to use an AVX prefilter, followed by
/// SSE and then followed by a generic one based on memchr.
#[cfg(all(not(miri), target_arch = "x86_64", memchr_runtime_simd))]
#[inline(always)]
pub(crate) fn forward(
config: &Prefilter,
rare: &RareNeedleBytes,
needle: &[u8],
) -> Option<PrefilterFn> {
if config.is_none() || needle.len() <= 1 {
return None;
}
#[cfg(feature = "std")]
{
if cfg!(memchr_runtime_avx) {
if is_x86_feature_detected!("avx2") {
// SAFETY: x86::avx::find only requires the avx2 feature,
// which we've just checked above.
return unsafe { Some(PrefilterFn::new(x86::avx::find)) };
}
}
}
if cfg!(memchr_runtime_sse2) {
// SAFETY: x86::sse::find only requires the sse2 feature, which is
// guaranteed to be available on x86_64.
return unsafe { Some(PrefilterFn::new(x86::sse::find)) };
}
// Check that our rarest byte has a reasonably low rank. The main issue
// here is that the fallback prefilter can perform pretty poorly if it's
// given common bytes. So we try to avoid the worst cases here.
let (rare1_rank, _) = rare.as_ranks(needle);
if rare1_rank <= MAX_FALLBACK_RANK {
// SAFETY: fallback::find is safe to call in all environments.
return unsafe { Some(PrefilterFn::new(fallback::find)) };
}
None
}
/// Determine which prefilter function, if any, to use.
///
/// Since SIMD is currently only supported on x86_64, this will just select
/// the fallback prefilter if the rare bytes provided have a low enough rank.
#[cfg(not(all(not(miri), target_arch = "x86_64", memchr_runtime_simd)))]
#[inline(always)]
pub(crate) fn forward(
config: &Prefilter,
rare: &RareNeedleBytes,
needle: &[u8],
) -> Option<PrefilterFn> {
if config.is_none() || needle.len() <= 1 {
return None;
}
let (rare1_rank, _) = rare.as_ranks(needle);
if rare1_rank <= MAX_FALLBACK_RANK {
// SAFETY: fallback::find is safe to call in all environments.
return unsafe { Some(PrefilterFn::new(fallback::find)) };
}
None
}
/// Return the minimum length of the haystack in which a prefilter should be
/// used. If the haystack is below this length, then it's probably not worth
/// the overhead of running the prefilter.
///
/// We used to look at the length of a haystack here. That is, if it was too
/// small, then don't bother with the prefilter. But two things changed:
/// the prefilter falls back to memchr for small haystacks, and, at the
/// meta-searcher level, Rabin-Karp is employed for tiny haystacks anyway.
///
/// We keep it around for now in case we want to bring it back.
#[allow(dead_code)]
pub(crate) fn minimum_len(_haystack: &[u8], needle: &[u8]) -> usize {
// If the haystack length isn't greater than needle.len() * FACTOR, then
// no prefilter will be used. The presumption here is that since there
// are so few bytes to check, it's not worth running the prefilter since
// there will need to be a validation step anyway. Thus, the prefilter is
// largely redundant work.
//
// Increase the factor noticeably hurts the
// memmem/krate/prebuilt/teeny-*/never-john-watson benchmarks.
const PREFILTER_LENGTH_FACTOR: usize = 2;
const VECTOR_MIN_LENGTH: usize = 16;
let min = core::cmp::max(
VECTOR_MIN_LENGTH,
PREFILTER_LENGTH_FACTOR * needle.len(),
);
// For haystacks with length==min, we still want to avoid the prefilter,
// so add 1.
min + 1
}
#[cfg(all(test, feature = "std", not(miri)))]
pub(crate) mod tests {
use std::convert::{TryFrom, TryInto};
use super::*;
use crate::memmem::{
prefilter::PrefilterFnTy, rabinkarp, rarebytes::RareNeedleBytes,
};
// Below is a small jig that generates prefilter tests. The main purpose
// of this jig is to generate tests of varying needle/haystack lengths
// in order to try and exercise all code paths in our prefilters. And in
// particular, this is especially important for vectorized prefilters where
// certain code paths might only be exercised at certain lengths.
/// A test that represents the input and expected output to a prefilter
/// function. The test should be able to run with any prefilter function
/// and get the expected output.
pub(crate) struct PrefilterTest {
// These fields represent the inputs and expected output of a forwards
// prefilter function.
pub(crate) ninfo: NeedleInfo,
pub(crate) haystack: Vec<u8>,
pub(crate) needle: Vec<u8>,
pub(crate) output: Option<usize>,
}
impl PrefilterTest {
/// Run all generated forward prefilter tests on the given prefn.
///
/// # Safety
///
/// Callers must ensure that the given prefilter function pointer is
/// safe to call for all inputs in the current environment.
pub(crate) unsafe fn run_all_tests(prefn: PrefilterFnTy) {
PrefilterTest::run_all_tests_filter(prefn, |_| true)
}
/// Run all generated forward prefilter tests that pass the given
/// predicate on the given prefn.
///
/// # Safety
///
/// Callers must ensure that the given prefilter function pointer is
/// safe to call for all inputs in the current environment.
pub(crate) unsafe fn run_all_tests_filter(
prefn: PrefilterFnTy,
mut predicate: impl FnMut(&PrefilterTest) -> bool,
) {
for seed in PREFILTER_TEST_SEEDS {
for test in seed.generate() {
if predicate(&test) {
test.run(prefn);
}
}
}
}
/// Create a new prefilter test from a seed and some chose offsets to
/// rare bytes in the seed's needle.
///
/// If a valid test could not be constructed, then None is returned.
/// (Currently, we take the approach of massaging tests to be valid
/// instead of rejecting them outright.)
fn new(
seed: &PrefilterTestSeed,
rare1i: usize,
rare2i: usize,
haystack_len: usize,
needle_len: usize,
output: Option<usize>,
) -> Option<PrefilterTest> {
let mut rare1i: u8 = rare1i.try_into().unwrap();
let mut rare2i: u8 = rare2i.try_into().unwrap();
// The '#' byte is never used in a haystack (unless we're expecting
// a match), while the '@' byte is never used in a needle.
let mut haystack = vec![b'@'; haystack_len];
let mut needle = vec![b'#'; needle_len];
needle[0] = seed.first;
needle[rare1i as usize] = seed.rare1;
needle[rare2i as usize] = seed.rare2;
// If we're expecting a match, then make sure the needle occurs
// in the haystack at the expected position.
if let Some(i) = output {
haystack[i..i + needle.len()].copy_from_slice(&needle);
}
// If the operations above lead to rare offsets pointing to the
// non-first occurrence of a byte, then adjust it. This might lead
// to redundant tests, but it's simpler than trying to change the
// generation process I think.
if let Some(i) = crate::memchr(seed.rare1, &needle) {
rare1i = u8::try_from(i).unwrap();
}
if let Some(i) = crate::memchr(seed.rare2, &needle) {
rare2i = u8::try_from(i).unwrap();
}
let ninfo = NeedleInfo {
rarebytes: RareNeedleBytes::new(rare1i, rare2i),
nhash: rabinkarp::NeedleHash::forward(&needle),
};
Some(PrefilterTest { ninfo, haystack, needle, output })
}
/// Run this specific test on the given prefilter function. If the
/// outputs do no match, then this routine panics with a failure
/// message.
///
/// # Safety
///
/// Callers must ensure that the given prefilter function pointer is
/// safe to call for all inputs in the current environment.
unsafe fn run(&self, prefn: PrefilterFnTy) {
let mut prestate = PrefilterState::new();
assert_eq!(
self.output,
prefn(
&mut prestate,
&self.ninfo,
&self.haystack,
&self.needle
),
"ninfo: {:?}, haystack(len={}): {:?}, needle(len={}): {:?}",
self.ninfo,
self.haystack.len(),
std::str::from_utf8(&self.haystack).unwrap(),
self.needle.len(),
std::str::from_utf8(&self.needle).unwrap(),
);
}
}
/// A set of prefilter test seeds. Each seed serves as the base for the
/// generation of many other tests. In essence, the seed captures the
/// "rare" and first bytes among our needle. The tests generated from each
/// seed essentially vary the length of the needle and haystack, while
/// using the rare/first byte configuration from the seed.
///
/// The purpose of this is to test many different needle/haystack lengths.
/// In particular, some of the vector optimizations might only have bugs
/// in haystacks of a certain size.
const PREFILTER_TEST_SEEDS: &[PrefilterTestSeed] = &[
PrefilterTestSeed { first: b'x', rare1: b'y', rare2: b'z' },
PrefilterTestSeed { first: b'x', rare1: b'x', rare2: b'z' },
PrefilterTestSeed { first: b'x', rare1: b'y', rare2: b'x' },
PrefilterTestSeed { first: b'x', rare1: b'x', rare2: b'x' },
PrefilterTestSeed { first: b'x', rare1: b'y', rare2: b'y' },
];
/// Data that describes a single prefilter test seed.
struct PrefilterTestSeed {
first: u8,
rare1: u8,
rare2: u8,
}
impl PrefilterTestSeed {
/// Generate a series of prefilter tests from this seed.
fn generate(&self) -> Vec<PrefilterTest> {
let mut tests = vec![];
let mut push = |test: Option<PrefilterTest>| {
if let Some(test) = test {
tests.push(test);
}
};
let len_start = 2;
// The loop below generates *a lot* of tests. The number of tests
// was chosen somewhat empirically to be "bearable" when running
// the test suite.
for needle_len in len_start..=40 {
let rare_start = len_start - 1;
for rare1i in rare_start..needle_len {
for rare2i in rare1i..needle_len {
for haystack_len in needle_len..=66 {
push(PrefilterTest::new(
self,
rare1i,
rare2i,
haystack_len,
needle_len,
None,
));
// Test all possible match scenarios for this
// needle and haystack.
for output in 0..=(haystack_len - needle_len) {
push(PrefilterTest::new(
self,
rare1i,
rare2i,
haystack_len,
needle_len,
Some(output),
));
}
}
}
}
}
tests
}
}
}