1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
use core::ops::{BitAnd, BitOr, BitXor, Not, Shl, Shr};

use bounds::Bounded;
use ops::checked::*;
use ops::saturating::Saturating;
use {Num, NumCast};

/// Generic trait for primitive integers.
///
/// The `PrimInt` trait is an abstraction over the builtin primitive integer types (e.g., `u8`,
/// `u32`, `isize`, `i128`, ...). It inherits the basic numeric traits and extends them with
/// bitwise operators and non-wrapping arithmetic.
///
/// The trait explicitly inherits `Copy`, `Eq`, `Ord`, and `Sized`. The intention is that all
/// types implementing this trait behave like primitive types that are passed by value by default
/// and behave like builtin integers. Furthermore, the types are expected to expose the integer
/// value in binary representation and support bitwise operators. The standard bitwise operations
/// (e.g., bitwise-and, bitwise-or, right-shift, left-shift) are inherited and the trait extends
/// these with introspective queries (e.g., `PrimInt::count_ones()`, `PrimInt::leading_zeros()`),
/// bitwise combinators (e.g., `PrimInt::rotate_left()`), and endianness converters (e.g.,
/// `PrimInt::to_be()`).
///
/// All `PrimInt` types are expected to be fixed-width binary integers. The width can be queried
/// via `T::zero().count_zeros()`. The trait currently lacks a way to query the width at
/// compile-time.
///
/// While a default implementation for all builtin primitive integers is provided, the trait is in
/// no way restricted to these. Other integer types that fulfil the requirements are free to
/// implement the trait was well.
///
/// This trait and many of the method names originate in the unstable `core::num::Int` trait from
/// the rust standard library. The original trait was never stabilized and thus removed from the
/// standard library.
pub trait PrimInt:
    Sized
    + Copy
    + Num
    + NumCast
    + Bounded
    + PartialOrd
    + Ord
    + Eq
    + Not<Output = Self>
    + BitAnd<Output = Self>
    + BitOr<Output = Self>
    + BitXor<Output = Self>
    + Shl<usize, Output = Self>
    + Shr<usize, Output = Self>
    + CheckedAdd<Output = Self>
    + CheckedSub<Output = Self>
    + CheckedMul<Output = Self>
    + CheckedDiv<Output = Self>
    + Saturating
{
    /// Returns the number of ones in the binary representation of `self`.
    ///
    /// # Examples
    ///
    /// ```
    /// use num_traits::PrimInt;
    ///
    /// let n = 0b01001100u8;
    ///
    /// assert_eq!(n.count_ones(), 3);
    /// ```
    fn count_ones(self) -> u32;

    /// Returns the number of zeros in the binary representation of `self`.
    ///
    /// # Examples
    ///
    /// ```
    /// use num_traits::PrimInt;
    ///
    /// let n = 0b01001100u8;
    ///
    /// assert_eq!(n.count_zeros(), 5);
    /// ```
    fn count_zeros(self) -> u32;

    /// Returns the number of leading zeros in the binary representation
    /// of `self`.
    ///
    /// # Examples
    ///
    /// ```
    /// use num_traits::PrimInt;
    ///
    /// let n = 0b0101000u16;
    ///
    /// assert_eq!(n.leading_zeros(), 10);
    /// ```
    fn leading_zeros(self) -> u32;

    /// Returns the number of trailing zeros in the binary representation
    /// of `self`.
    ///
    /// # Examples
    ///
    /// ```
    /// use num_traits::PrimInt;
    ///
    /// let n = 0b0101000u16;
    ///
    /// assert_eq!(n.trailing_zeros(), 3);
    /// ```
    fn trailing_zeros(self) -> u32;

    /// Shifts the bits to the left by a specified amount, `n`, wrapping
    /// the truncated bits to the end of the resulting integer.
    ///
    /// # Examples
    ///
    /// ```
    /// use num_traits::PrimInt;
    ///
    /// let n = 0x0123456789ABCDEFu64;
    /// let m = 0x3456789ABCDEF012u64;
    ///
    /// assert_eq!(n.rotate_left(12), m);
    /// ```
    fn rotate_left(self, n: u32) -> Self;

    /// Shifts the bits to the right by a specified amount, `n`, wrapping
    /// the truncated bits to the beginning of the resulting integer.
    ///
    /// # Examples
    ///
    /// ```
    /// use num_traits::PrimInt;
    ///
    /// let n = 0x0123456789ABCDEFu64;
    /// let m = 0xDEF0123456789ABCu64;
    ///
    /// assert_eq!(n.rotate_right(12), m);
    /// ```
    fn rotate_right(self, n: u32) -> Self;

    /// Shifts the bits to the left by a specified amount, `n`, filling
    /// zeros in the least significant bits.
    ///
    /// This is bitwise equivalent to signed `Shl`.
    ///
    /// # Examples
    ///
    /// ```
    /// use num_traits::PrimInt;
    ///
    /// let n = 0x0123456789ABCDEFu64;
    /// let m = 0x3456789ABCDEF000u64;
    ///
    /// assert_eq!(n.signed_shl(12), m);
    /// ```
    fn signed_shl(self, n: u32) -> Self;

    /// Shifts the bits to the right by a specified amount, `n`, copying
    /// the "sign bit" in the most significant bits even for unsigned types.
    ///
    /// This is bitwise equivalent to signed `Shr`.
    ///
    /// # Examples
    ///
    /// ```
    /// use num_traits::PrimInt;
    ///
    /// let n = 0xFEDCBA9876543210u64;
    /// let m = 0xFFFFEDCBA9876543u64;
    ///
    /// assert_eq!(n.signed_shr(12), m);
    /// ```
    fn signed_shr(self, n: u32) -> Self;

    /// Shifts the bits to the left by a specified amount, `n`, filling
    /// zeros in the least significant bits.
    ///
    /// This is bitwise equivalent to unsigned `Shl`.
    ///
    /// # Examples
    ///
    /// ```
    /// use num_traits::PrimInt;
    ///
    /// let n = 0x0123456789ABCDEFi64;
    /// let m = 0x3456789ABCDEF000i64;
    ///
    /// assert_eq!(n.unsigned_shl(12), m);
    /// ```
    fn unsigned_shl(self, n: u32) -> Self;

    /// Shifts the bits to the right by a specified amount, `n`, filling
    /// zeros in the most significant bits.
    ///
    /// This is bitwise equivalent to unsigned `Shr`.
    ///
    /// # Examples
    ///
    /// ```
    /// use num_traits::PrimInt;
    ///
    /// let n = -8i8; // 0b11111000
    /// let m = 62i8; // 0b00111110
    ///
    /// assert_eq!(n.unsigned_shr(2), m);
    /// ```
    fn unsigned_shr(self, n: u32) -> Self;

    /// Reverses the byte order of the integer.
    ///
    /// # Examples
    ///
    /// ```
    /// use num_traits::PrimInt;
    ///
    /// let n = 0x0123456789ABCDEFu64;
    /// let m = 0xEFCDAB8967452301u64;
    ///
    /// assert_eq!(n.swap_bytes(), m);
    /// ```
    fn swap_bytes(self) -> Self;

    /// Convert an integer from big endian to the target's endianness.
    ///
    /// On big endian this is a no-op. On little endian the bytes are swapped.
    ///
    /// # Examples
    ///
    /// ```
    /// use num_traits::PrimInt;
    ///
    /// let n = 0x0123456789ABCDEFu64;
    ///
    /// if cfg!(target_endian = "big") {
    ///     assert_eq!(u64::from_be(n), n)
    /// } else {
    ///     assert_eq!(u64::from_be(n), n.swap_bytes())
    /// }
    /// ```
    fn from_be(x: Self) -> Self;

    /// Convert an integer from little endian to the target's endianness.
    ///
    /// On little endian this is a no-op. On big endian the bytes are swapped.
    ///
    /// # Examples
    ///
    /// ```
    /// use num_traits::PrimInt;
    ///
    /// let n = 0x0123456789ABCDEFu64;
    ///
    /// if cfg!(target_endian = "little") {
    ///     assert_eq!(u64::from_le(n), n)
    /// } else {
    ///     assert_eq!(u64::from_le(n), n.swap_bytes())
    /// }
    /// ```
    fn from_le(x: Self) -> Self;

    /// Convert `self` to big endian from the target's endianness.
    ///
    /// On big endian this is a no-op. On little endian the bytes are swapped.
    ///
    /// # Examples
    ///
    /// ```
    /// use num_traits::PrimInt;
    ///
    /// let n = 0x0123456789ABCDEFu64;
    ///
    /// if cfg!(target_endian = "big") {
    ///     assert_eq!(n.to_be(), n)
    /// } else {
    ///     assert_eq!(n.to_be(), n.swap_bytes())
    /// }
    /// ```
    fn to_be(self) -> Self;

    /// Convert `self` to little endian from the target's endianness.
    ///
    /// On little endian this is a no-op. On big endian the bytes are swapped.
    ///
    /// # Examples
    ///
    /// ```
    /// use num_traits::PrimInt;
    ///
    /// let n = 0x0123456789ABCDEFu64;
    ///
    /// if cfg!(target_endian = "little") {
    ///     assert_eq!(n.to_le(), n)
    /// } else {
    ///     assert_eq!(n.to_le(), n.swap_bytes())
    /// }
    /// ```
    fn to_le(self) -> Self;

    /// Raises self to the power of `exp`, using exponentiation by squaring.
    ///
    /// # Examples
    ///
    /// ```
    /// use num_traits::PrimInt;
    ///
    /// assert_eq!(2i32.pow(4), 16);
    /// ```
    fn pow(self, exp: u32) -> Self;
}

macro_rules! prim_int_impl {
    ($T:ty, $S:ty, $U:ty) => {
        impl PrimInt for $T {
            #[inline]
            fn count_ones(self) -> u32 {
                <$T>::count_ones(self)
            }

            #[inline]
            fn count_zeros(self) -> u32 {
                <$T>::count_zeros(self)
            }

            #[inline]
            fn leading_zeros(self) -> u32 {
                <$T>::leading_zeros(self)
            }

            #[inline]
            fn trailing_zeros(self) -> u32 {
                <$T>::trailing_zeros(self)
            }

            #[inline]
            fn rotate_left(self, n: u32) -> Self {
                <$T>::rotate_left(self, n)
            }

            #[inline]
            fn rotate_right(self, n: u32) -> Self {
                <$T>::rotate_right(self, n)
            }

            #[inline]
            fn signed_shl(self, n: u32) -> Self {
                ((self as $S) << n) as $T
            }

            #[inline]
            fn signed_shr(self, n: u32) -> Self {
                ((self as $S) >> n) as $T
            }

            #[inline]
            fn unsigned_shl(self, n: u32) -> Self {
                ((self as $U) << n) as $T
            }

            #[inline]
            fn unsigned_shr(self, n: u32) -> Self {
                ((self as $U) >> n) as $T
            }

            #[inline]
            fn swap_bytes(self) -> Self {
                <$T>::swap_bytes(self)
            }

            #[inline]
            fn from_be(x: Self) -> Self {
                <$T>::from_be(x)
            }

            #[inline]
            fn from_le(x: Self) -> Self {
                <$T>::from_le(x)
            }

            #[inline]
            fn to_be(self) -> Self {
                <$T>::to_be(self)
            }

            #[inline]
            fn to_le(self) -> Self {
                <$T>::to_le(self)
            }

            #[inline]
            fn pow(self, exp: u32) -> Self {
                <$T>::pow(self, exp)
            }
        }
    };
}

// prim_int_impl!(type, signed, unsigned);
prim_int_impl!(u8, i8, u8);
prim_int_impl!(u16, i16, u16);
prim_int_impl!(u32, i32, u32);
prim_int_impl!(u64, i64, u64);
#[cfg(has_i128)]
prim_int_impl!(u128, i128, u128);
prim_int_impl!(usize, isize, usize);
prim_int_impl!(i8, i8, u8);
prim_int_impl!(i16, i16, u16);
prim_int_impl!(i32, i32, u32);
prim_int_impl!(i64, i64, u64);
#[cfg(has_i128)]
prim_int_impl!(i128, i128, u128);
prim_int_impl!(isize, isize, usize);