1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
use super::{IndexedParallelIterator, IntoParallelIterator, ParallelExtend, ParallelIterator};
use std::mem::MaybeUninit;
use std::slice;

mod consumer;
use self::consumer::CollectConsumer;
use self::consumer::CollectResult;
use super::unzip::unzip_indexed;

mod test;

/// Collects the results of the exact iterator into the specified vector.
///
/// This is called by `IndexedParallelIterator::collect_into_vec`.
pub(super) fn collect_into_vec<I, T>(pi: I, v: &mut Vec<T>)
where
    I: IndexedParallelIterator<Item = T>,
    T: Send,
{
    v.truncate(0); // clear any old data
    let len = pi.len();
    Collect::new(v, len).with_consumer(|consumer| pi.drive(consumer));
}

/// Collects the results of the iterator into the specified vector.
///
/// Technically, this only works for `IndexedParallelIterator`, but we're faking a
/// bit of specialization here until Rust can do that natively.  Callers are
/// using `opt_len` to find the length before calling this, and only exact
/// iterators will return anything but `None` there.
///
/// Since the type system doesn't understand that contract, we have to allow
/// *any* `ParallelIterator` here, and `CollectConsumer` has to also implement
/// `UnindexedConsumer`.  That implementation panics `unreachable!` in case
/// there's a bug where we actually do try to use this unindexed.
fn special_extend<I, T>(pi: I, len: usize, v: &mut Vec<T>)
where
    I: ParallelIterator<Item = T>,
    T: Send,
{
    Collect::new(v, len).with_consumer(|consumer| pi.drive_unindexed(consumer));
}

/// Unzips the results of the exact iterator into the specified vectors.
///
/// This is called by `IndexedParallelIterator::unzip_into_vecs`.
pub(super) fn unzip_into_vecs<I, A, B>(pi: I, left: &mut Vec<A>, right: &mut Vec<B>)
where
    I: IndexedParallelIterator<Item = (A, B)>,
    A: Send,
    B: Send,
{
    // clear any old data
    left.truncate(0);
    right.truncate(0);

    let len = pi.len();
    Collect::new(right, len).with_consumer(|right_consumer| {
        let mut right_result = None;
        Collect::new(left, len).with_consumer(|left_consumer| {
            let (left_r, right_r) = unzip_indexed(pi, left_consumer, right_consumer);
            right_result = Some(right_r);
            left_r
        });
        right_result.unwrap()
    });
}

/// Manage the collection vector.
struct Collect<'c, T: Send> {
    vec: &'c mut Vec<T>,
    len: usize,
}

impl<'c, T: Send + 'c> Collect<'c, T> {
    fn new(vec: &'c mut Vec<T>, len: usize) -> Self {
        Collect { vec, len }
    }

    /// Create a consumer on the slice of memory we are collecting into.
    ///
    /// The consumer needs to be used inside the scope function, and the
    /// complete collect result passed back.
    ///
    /// This method will verify the collect result, and panic if the slice
    /// was not fully written into. Otherwise, in the successful case,
    /// the vector is complete with the collected result.
    fn with_consumer<F>(mut self, scope_fn: F)
    where
        F: FnOnce(CollectConsumer<'_, T>) -> CollectResult<'_, T>,
    {
        let slice = Self::reserve_get_tail_slice(&mut self.vec, self.len);
        let result = scope_fn(CollectConsumer::new(slice));

        // The CollectResult represents a contiguous part of the
        // slice, that has been written to.
        // On unwind here, the CollectResult will be dropped.
        // If some producers on the way did not produce enough elements,
        // partial CollectResults may have been dropped without
        // being reduced to the final result, and we will see
        // that as the length coming up short.
        //
        // Here, we assert that `slice` is fully initialized. This is
        // checked by the following assert, which verifies if a
        // complete CollectResult was produced; if the length is
        // correct, it is necessarily covering the target slice.
        // Since we know that the consumer cannot have escaped from
        // `drive` (by parametricity, essentially), we know that any
        // stores that will happen, have happened. Unless some code is buggy,
        // that means we should have seen `len` total writes.
        let actual_writes = result.len();
        assert!(
            actual_writes == self.len,
            "expected {} total writes, but got {}",
            self.len,
            actual_writes
        );

        // Release the result's mutable borrow and "proxy ownership"
        // of the elements, before the vector takes it over.
        result.release_ownership();

        let new_len = self.vec.len() + self.len;

        unsafe {
            self.vec.set_len(new_len);
        }
    }

    /// Reserve space for `len` more elements in the vector,
    /// and return a slice to the uninitialized tail of the vector
    fn reserve_get_tail_slice(vec: &mut Vec<T>, len: usize) -> &mut [MaybeUninit<T>] {
        // Reserve the new space.
        vec.reserve(len);

        // TODO: use `Vec::spare_capacity_mut` instead
        // SAFETY: `MaybeUninit<T>` is guaranteed to have the same layout
        // as `T`, and we already made sure to have the additional space.
        let start = vec.len();
        let tail_ptr = vec[start..].as_mut_ptr() as *mut MaybeUninit<T>;
        unsafe { slice::from_raw_parts_mut(tail_ptr, len) }
    }
}

/// Extends a vector with items from a parallel iterator.
impl<T> ParallelExtend<T> for Vec<T>
where
    T: Send,
{
    fn par_extend<I>(&mut self, par_iter: I)
    where
        I: IntoParallelIterator<Item = T>,
    {
        // See the vec_collect benchmarks in rayon-demo for different strategies.
        let par_iter = par_iter.into_par_iter();
        match par_iter.opt_len() {
            Some(len) => {
                // When Rust gets specialization, we can get here for indexed iterators
                // without relying on `opt_len`.  Until then, `special_extend()` fakes
                // an unindexed mode on the promise that `opt_len()` is accurate.
                special_extend(par_iter, len, self);
            }
            None => {
                // This works like `extend`, but `Vec::append` is more efficient.
                let list = super::extend::collect(par_iter);
                self.reserve(super::extend::len(&list));
                for mut vec in list {
                    self.append(&mut vec);
                }
            }
        }
    }
}