1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194
//! Traits for writing parallel programs using an iterator-style interface
//!
//! You will rarely need to interact with this module directly unless you have
//! need to name one of the iterator types.
//!
//! Parallel iterators make it easy to write iterator-like chains that
//! execute in parallel: typically all you have to do is convert the
//! first `.iter()` (or `iter_mut()`, `into_iter()`, etc) method into
//! `par_iter()` (or `par_iter_mut()`, `into_par_iter()`, etc). For
//! example, to compute the sum of the squares of a sequence of
//! integers, one might write:
//!
//! ```rust
//! use rayon::prelude::*;
//! fn sum_of_squares(input: &[i32]) -> i32 {
//! input.par_iter()
//! .map(|i| i * i)
//! .sum()
//! }
//! ```
//!
//! Or, to increment all the integers in a slice, you could write:
//!
//! ```rust
//! use rayon::prelude::*;
//! fn increment_all(input: &mut [i32]) {
//! input.par_iter_mut()
//! .for_each(|p| *p += 1);
//! }
//! ```
//!
//! To use parallel iterators, first import the traits by adding
//! something like `use rayon::prelude::*` to your module. You can
//! then call `par_iter`, `par_iter_mut`, or `into_par_iter` to get a
//! parallel iterator. Like a [regular iterator][], parallel
//! iterators work by first constructing a computation and then
//! executing it.
//!
//! In addition to `par_iter()` and friends, some types offer other
//! ways to create (or consume) parallel iterators:
//!
//! - Slices (`&[T]`, `&mut [T]`) offer methods like `par_split` and
//! `par_windows`, as well as various parallel sorting
//! operations. See [the `ParallelSlice` trait] for the full list.
//! - Strings (`&str`) offer methods like `par_split` and `par_lines`.
//! See [the `ParallelString` trait] for the full list.
//! - Various collections offer [`par_extend`], which grows a
//! collection given a parallel iterator. (If you don't have a
//! collection to extend, you can use [`collect()`] to create a new
//! one from scratch.)
//!
//! [the `ParallelSlice` trait]: ../slice/trait.ParallelSlice.html
//! [the `ParallelString` trait]: ../str/trait.ParallelString.html
//! [`par_extend`]: trait.ParallelExtend.html
//! [`collect()`]: trait.ParallelIterator.html#method.collect
//!
//! To see the full range of methods available on parallel iterators,
//! check out the [`ParallelIterator`] and [`IndexedParallelIterator`]
//! traits.
//!
//! If you'd like to build a custom parallel iterator, or to write your own
//! combinator, then check out the [split] function and the [plumbing] module.
//!
//! [regular iterator]: https://doc.rust-lang.org/std/iter/trait.Iterator.html
//! [`ParallelIterator`]: trait.ParallelIterator.html
//! [`IndexedParallelIterator`]: trait.IndexedParallelIterator.html
//! [split]: fn.split.html
//! [plumbing]: plumbing/index.html
//!
//! Note: Several of the `ParallelIterator` methods rely on a `Try` trait which
//! has been deliberately obscured from the public API. This trait is intended
//! to mirror the unstable `std::ops::Try` with implementations for `Option` and
//! `Result`, where `Some`/`Ok` values will let those iterators continue, but
//! `None`/`Err` values will exit early.
//!
//! A note about object safety: It is currently _not_ possible to wrap
//! a `ParallelIterator` (or any trait that depends on it) using a
//! `Box<dyn ParallelIterator>` or other kind of dynamic allocation,
//! because `ParallelIterator` is **not object-safe**.
//! (This keeps the implementation simpler and allows extra optimizations.)
use self::plumbing::*;
use self::private::Try;
pub use either::Either;
use std::cmp::{self, Ordering};
use std::iter::{Product, Sum};
use std::ops::{Fn, RangeBounds};
pub mod plumbing;
#[cfg(test)]
mod test;
// There is a method to the madness here:
//
// - These modules are private but expose certain types to the end-user
// (e.g., `enumerate::Enumerate`) -- specifically, the types that appear in the
// public API surface of the `ParallelIterator` traits.
// - In **this** module, those public types are always used unprefixed, which forces
// us to add a `pub use` and helps identify if we missed anything.
// - In contrast, items that appear **only** in the body of a method,
// e.g. `find::find()`, are always used **prefixed**, so that they
// can be readily distinguished.
mod chain;
mod chunks;
mod cloned;
mod collect;
mod copied;
mod empty;
mod enumerate;
mod extend;
mod filter;
mod filter_map;
mod find;
mod find_first_last;
mod flat_map;
mod flat_map_iter;
mod flatten;
mod flatten_iter;
mod fold;
mod for_each;
mod from_par_iter;
mod inspect;
mod interleave;
mod interleave_shortest;
mod intersperse;
mod len;
mod map;
mod map_with;
mod multizip;
mod noop;
mod once;
mod panic_fuse;
mod par_bridge;
mod positions;
mod product;
mod reduce;
mod repeat;
mod rev;
mod skip;
mod splitter;
mod sum;
mod take;
mod try_fold;
mod try_reduce;
mod try_reduce_with;
mod unzip;
mod update;
mod while_some;
mod zip;
mod zip_eq;
pub use self::{
chain::Chain,
chunks::Chunks,
cloned::Cloned,
copied::Copied,
empty::{empty, Empty},
enumerate::Enumerate,
filter::Filter,
filter_map::FilterMap,
flat_map::FlatMap,
flat_map_iter::FlatMapIter,
flatten::Flatten,
flatten_iter::FlattenIter,
fold::{Fold, FoldWith},
inspect::Inspect,
interleave::Interleave,
interleave_shortest::InterleaveShortest,
intersperse::Intersperse,
len::{MaxLen, MinLen},
map::Map,
map_with::{MapInit, MapWith},
multizip::MultiZip,
once::{once, Once},
panic_fuse::PanicFuse,
par_bridge::{IterBridge, ParallelBridge},
positions::Positions,
repeat::{repeat, repeatn, Repeat, RepeatN},
rev::Rev,
skip::Skip,
splitter::{split, Split},
take::Take,
try_fold::{TryFold, TryFoldWith},
update::Update,
while_some::WhileSome,
zip::Zip,
zip_eq::ZipEq,
};
mod step_by;
#[cfg(step_by)]
pub use self::step_by::StepBy;
/// `IntoParallelIterator` implements the conversion to a [`ParallelIterator`].
///
/// By implementing `IntoParallelIterator` for a type, you define how it will
/// transformed into an iterator. This is a parallel version of the standard
/// library's [`std::iter::IntoIterator`] trait.
///
/// [`ParallelIterator`]: trait.ParallelIterator.html
/// [`std::iter::IntoIterator`]: https://doc.rust-lang.org/std/iter/trait.IntoIterator.html
pub trait IntoParallelIterator {
/// The parallel iterator type that will be created.
type Iter: ParallelIterator<Item = Self::Item>;
/// The type of item that the parallel iterator will produce.
type Item: Send;
/// Converts `self` into a parallel iterator.
///
/// # Examples
///
/// ```
/// use rayon::prelude::*;
///
/// println!("counting in parallel:");
/// (0..100).into_par_iter()
/// .for_each(|i| println!("{}", i));
/// ```
///
/// This conversion is often implicit for arguments to methods like [`zip`].
///
/// ```
/// use rayon::prelude::*;
///
/// let v: Vec<_> = (0..5).into_par_iter().zip(5..10).collect();
/// assert_eq!(v, [(0, 5), (1, 6), (2, 7), (3, 8), (4, 9)]);
/// ```
///
/// [`zip`]: trait.IndexedParallelIterator.html#method.zip
fn into_par_iter(self) -> Self::Iter;
}
/// `IntoParallelRefIterator` implements the conversion to a
/// [`ParallelIterator`], providing shared references to the data.
///
/// This is a parallel version of the `iter()` method
/// defined by various collections.
///
/// This trait is automatically implemented
/// `for I where &I: IntoParallelIterator`. In most cases, users
/// will want to implement [`IntoParallelIterator`] rather than implement
/// this trait directly.
///
/// [`ParallelIterator`]: trait.ParallelIterator.html
/// [`IntoParallelIterator`]: trait.IntoParallelIterator.html
pub trait IntoParallelRefIterator<'data> {
/// The type of the parallel iterator that will be returned.
type Iter: ParallelIterator<Item = Self::Item>;
/// The type of item that the parallel iterator will produce.
/// This will typically be an `&'data T` reference type.
type Item: Send + 'data;
/// Converts `self` into a parallel iterator.
///
/// # Examples
///
/// ```
/// use rayon::prelude::*;
///
/// let v: Vec<_> = (0..100).collect();
/// assert_eq!(v.par_iter().sum::<i32>(), 100 * 99 / 2);
///
/// // `v.par_iter()` is shorthand for `(&v).into_par_iter()`,
/// // producing the exact same references.
/// assert!(v.par_iter().zip(&v)
/// .all(|(a, b)| std::ptr::eq(a, b)));
/// ```
fn par_iter(&'data self) -> Self::Iter;
}
impl<'data, I: 'data + ?Sized> IntoParallelRefIterator<'data> for I
where
&'data I: IntoParallelIterator,
{
type Iter = <&'data I as IntoParallelIterator>::Iter;
type Item = <&'data I as IntoParallelIterator>::Item;
fn par_iter(&'data self) -> Self::Iter {
self.into_par_iter()
}
}
/// `IntoParallelRefMutIterator` implements the conversion to a
/// [`ParallelIterator`], providing mutable references to the data.
///
/// This is a parallel version of the `iter_mut()` method
/// defined by various collections.
///
/// This trait is automatically implemented
/// `for I where &mut I: IntoParallelIterator`. In most cases, users
/// will want to implement [`IntoParallelIterator`] rather than implement
/// this trait directly.
///
/// [`ParallelIterator`]: trait.ParallelIterator.html
/// [`IntoParallelIterator`]: trait.IntoParallelIterator.html
pub trait IntoParallelRefMutIterator<'data> {
/// The type of iterator that will be created.
type Iter: ParallelIterator<Item = Self::Item>;
/// The type of item that will be produced; this is typically an
/// `&'data mut T` reference.
type Item: Send + 'data;
/// Creates the parallel iterator from `self`.
///
/// # Examples
///
/// ```
/// use rayon::prelude::*;
///
/// let mut v = vec![0usize; 5];
/// v.par_iter_mut().enumerate().for_each(|(i, x)| *x = i);
/// assert_eq!(v, [0, 1, 2, 3, 4]);
/// ```
fn par_iter_mut(&'data mut self) -> Self::Iter;
}
impl<'data, I: 'data + ?Sized> IntoParallelRefMutIterator<'data> for I
where
&'data mut I: IntoParallelIterator,
{
type Iter = <&'data mut I as IntoParallelIterator>::Iter;
type Item = <&'data mut I as IntoParallelIterator>::Item;
fn par_iter_mut(&'data mut self) -> Self::Iter {
self.into_par_iter()
}
}
/// Parallel version of the standard iterator trait.
///
/// The combinators on this trait are available on **all** parallel
/// iterators. Additional methods can be found on the
/// [`IndexedParallelIterator`] trait: those methods are only
/// available for parallel iterators where the number of items is
/// known in advance (so, e.g., after invoking `filter`, those methods
/// become unavailable).
///
/// For examples of using parallel iterators, see [the docs on the
/// `iter` module][iter].
///
/// [iter]: index.html
/// [`IndexedParallelIterator`]: trait.IndexedParallelIterator.html
pub trait ParallelIterator: Sized + Send {
/// The type of item that this parallel iterator produces.
/// For example, if you use the [`for_each`] method, this is the type of
/// item that your closure will be invoked with.
///
/// [`for_each`]: #method.for_each
type Item: Send;
/// Executes `OP` on each item produced by the iterator, in parallel.
///
/// # Examples
///
/// ```
/// use rayon::prelude::*;
///
/// (0..100).into_par_iter().for_each(|x| println!("{:?}", x));
/// ```
fn for_each<OP>(self, op: OP)
where
OP: Fn(Self::Item) + Sync + Send,
{
for_each::for_each(self, &op)
}
/// Executes `OP` on the given `init` value with each item produced by
/// the iterator, in parallel.
///
/// The `init` value will be cloned only as needed to be paired with
/// the group of items in each rayon job. It does not require the type
/// to be `Sync`.
///
/// # Examples
///
/// ```
/// use std::sync::mpsc::channel;
/// use rayon::prelude::*;
///
/// let (sender, receiver) = channel();
///
/// (0..5).into_par_iter().for_each_with(sender, |s, x| s.send(x).unwrap());
///
/// let mut res: Vec<_> = receiver.iter().collect();
///
/// res.sort();
///
/// assert_eq!(&res[..], &[0, 1, 2, 3, 4])
/// ```
fn for_each_with<OP, T>(self, init: T, op: OP)
where
OP: Fn(&mut T, Self::Item) + Sync + Send,
T: Send + Clone,
{
self.map_with(init, op).collect()
}
/// Executes `OP` on a value returned by `init` with each item produced by
/// the iterator, in parallel.
///
/// The `init` function will be called only as needed for a value to be
/// paired with the group of items in each rayon job. There is no
/// constraint on that returned type at all!
///
/// # Examples
///
/// ```
/// use rand::Rng;
/// use rayon::prelude::*;
///
/// let mut v = vec![0u8; 1_000_000];
///
/// v.par_chunks_mut(1000)
/// .for_each_init(
/// || rand::thread_rng(),
/// |rng, chunk| rng.fill(chunk),
/// );
///
/// // There's a remote chance that this will fail...
/// for i in 0u8..=255 {
/// assert!(v.contains(&i));
/// }
/// ```
fn for_each_init<OP, INIT, T>(self, init: INIT, op: OP)
where
OP: Fn(&mut T, Self::Item) + Sync + Send,
INIT: Fn() -> T + Sync + Send,
{
self.map_init(init, op).collect()
}
/// Executes a fallible `OP` on each item produced by the iterator, in parallel.
///
/// If the `OP` returns `Result::Err` or `Option::None`, we will attempt to
/// stop processing the rest of the items in the iterator as soon as
/// possible, and we will return that terminating value. Otherwise, we will
/// return an empty `Result::Ok(())` or `Option::Some(())`. If there are
/// multiple errors in parallel, it is not specified which will be returned.
///
/// # Examples
///
/// ```
/// use rayon::prelude::*;
/// use std::io::{self, Write};
///
/// // This will stop iteration early if there's any write error, like
/// // having piped output get closed on the other end.
/// (0..100).into_par_iter()
/// .try_for_each(|x| writeln!(io::stdout(), "{:?}", x))
/// .expect("expected no write errors");
/// ```
fn try_for_each<OP, R>(self, op: OP) -> R
where
OP: Fn(Self::Item) -> R + Sync + Send,
R: Try<Ok = ()> + Send,
{
fn ok<R: Try<Ok = ()>>(_: (), _: ()) -> R {
R::from_ok(())
}
self.map(op).try_reduce(<()>::default, ok)
}
/// Executes a fallible `OP` on the given `init` value with each item
/// produced by the iterator, in parallel.
///
/// This combines the `init` semantics of [`for_each_with()`] and the
/// failure semantics of [`try_for_each()`].
///
/// [`for_each_with()`]: #method.for_each_with
/// [`try_for_each()`]: #method.try_for_each
///
/// # Examples
///
/// ```
/// use std::sync::mpsc::channel;
/// use rayon::prelude::*;
///
/// let (sender, receiver) = channel();
///
/// (0..5).into_par_iter()
/// .try_for_each_with(sender, |s, x| s.send(x))
/// .expect("expected no send errors");
///
/// let mut res: Vec<_> = receiver.iter().collect();
///
/// res.sort();
///
/// assert_eq!(&res[..], &[0, 1, 2, 3, 4])
/// ```
fn try_for_each_with<OP, T, R>(self, init: T, op: OP) -> R
where
OP: Fn(&mut T, Self::Item) -> R + Sync + Send,
T: Send + Clone,
R: Try<Ok = ()> + Send,
{
fn ok<R: Try<Ok = ()>>(_: (), _: ()) -> R {
R::from_ok(())
}
self.map_with(init, op).try_reduce(<()>::default, ok)
}
/// Executes a fallible `OP` on a value returned by `init` with each item
/// produced by the iterator, in parallel.
///
/// This combines the `init` semantics of [`for_each_init()`] and the
/// failure semantics of [`try_for_each()`].
///
/// [`for_each_init()`]: #method.for_each_init
/// [`try_for_each()`]: #method.try_for_each
///
/// # Examples
///
/// ```
/// use rand::Rng;
/// use rayon::prelude::*;
///
/// let mut v = vec![0u8; 1_000_000];
///
/// v.par_chunks_mut(1000)
/// .try_for_each_init(
/// || rand::thread_rng(),
/// |rng, chunk| rng.try_fill(chunk),
/// )
/// .expect("expected no rand errors");
///
/// // There's a remote chance that this will fail...
/// for i in 0u8..=255 {
/// assert!(v.contains(&i));
/// }
/// ```
fn try_for_each_init<OP, INIT, T, R>(self, init: INIT, op: OP) -> R
where
OP: Fn(&mut T, Self::Item) -> R + Sync + Send,
INIT: Fn() -> T + Sync + Send,
R: Try<Ok = ()> + Send,
{
fn ok<R: Try<Ok = ()>>(_: (), _: ()) -> R {
R::from_ok(())
}
self.map_init(init, op).try_reduce(<()>::default, ok)
}
/// Counts the number of items in this parallel iterator.
///
/// # Examples
///
/// ```
/// use rayon::prelude::*;
///
/// let count = (0..100).into_par_iter().count();
///
/// assert_eq!(count, 100);
/// ```
fn count(self) -> usize {
fn one<T>(_: T) -> usize {
1
}
self.map(one).sum()
}
/// Applies `map_op` to each item of this iterator, producing a new
/// iterator with the results.
///
/// # Examples
///
/// ```
/// use rayon::prelude::*;
///
/// let mut par_iter = (0..5).into_par_iter().map(|x| x * 2);
///
/// let doubles: Vec<_> = par_iter.collect();
///
/// assert_eq!(&doubles[..], &[0, 2, 4, 6, 8]);
/// ```
fn map<F, R>(self, map_op: F) -> Map<Self, F>
where
F: Fn(Self::Item) -> R + Sync + Send,
R: Send,
{
Map::new(self, map_op)
}
/// Applies `map_op` to the given `init` value with each item of this
/// iterator, producing a new iterator with the results.
///
/// The `init` value will be cloned only as needed to be paired with
/// the group of items in each rayon job. It does not require the type
/// to be `Sync`.
///
/// # Examples
///
/// ```
/// use std::sync::mpsc::channel;
/// use rayon::prelude::*;
///
/// let (sender, receiver) = channel();
///
/// let a: Vec<_> = (0..5)
/// .into_par_iter() // iterating over i32
/// .map_with(sender, |s, x| {
/// s.send(x).unwrap(); // sending i32 values through the channel
/// x // returning i32
/// })
/// .collect(); // collecting the returned values into a vector
///
/// let mut b: Vec<_> = receiver.iter() // iterating over the values in the channel
/// .collect(); // and collecting them
/// b.sort();
///
/// assert_eq!(a, b);
/// ```
fn map_with<F, T, R>(self, init: T, map_op: F) -> MapWith<Self, T, F>
where
F: Fn(&mut T, Self::Item) -> R + Sync + Send,
T: Send + Clone,
R: Send,
{
MapWith::new(self, init, map_op)
}
/// Applies `map_op` to a value returned by `init` with each item of this
/// iterator, producing a new iterator with the results.
///
/// The `init` function will be called only as needed for a value to be
/// paired with the group of items in each rayon job. There is no
/// constraint on that returned type at all!
///
/// # Examples
///
/// ```
/// use rand::Rng;
/// use rayon::prelude::*;
///
/// let a: Vec<_> = (1i32..1_000_000)
/// .into_par_iter()
/// .map_init(
/// || rand::thread_rng(), // get the thread-local RNG
/// |rng, x| if rng.gen() { // randomly negate items
/// -x
/// } else {
/// x
/// },
/// ).collect();
///
/// // There's a remote chance that this will fail...
/// assert!(a.iter().any(|&x| x < 0));
/// assert!(a.iter().any(|&x| x > 0));
/// ```
fn map_init<F, INIT, T, R>(self, init: INIT, map_op: F) -> MapInit<Self, INIT, F>
where
F: Fn(&mut T, Self::Item) -> R + Sync + Send,
INIT: Fn() -> T + Sync + Send,
R: Send,
{
MapInit::new(self, init, map_op)
}
/// Creates an iterator which clones all of its elements. This may be
/// useful when you have an iterator over `&T`, but you need `T`, and
/// that type implements `Clone`. See also [`copied()`].
///
/// [`copied()`]: #method.copied
///
/// # Examples
///
/// ```
/// use rayon::prelude::*;
///
/// let a = [1, 2, 3];
///
/// let v_cloned: Vec<_> = a.par_iter().cloned().collect();
///
/// // cloned is the same as .map(|&x| x), for integers
/// let v_map: Vec<_> = a.par_iter().map(|&x| x).collect();
///
/// assert_eq!(v_cloned, vec![1, 2, 3]);
/// assert_eq!(v_map, vec![1, 2, 3]);
/// ```
fn cloned<'a, T>(self) -> Cloned<Self>
where
T: 'a + Clone + Send,
Self: ParallelIterator<Item = &'a T>,
{
Cloned::new(self)
}
/// Creates an iterator which copies all of its elements. This may be
/// useful when you have an iterator over `&T`, but you need `T`, and
/// that type implements `Copy`. See also [`cloned()`].
///
/// [`cloned()`]: #method.cloned
///
/// # Examples
///
/// ```
/// use rayon::prelude::*;
///
/// let a = [1, 2, 3];
///
/// let v_copied: Vec<_> = a.par_iter().copied().collect();
///
/// // copied is the same as .map(|&x| x), for integers
/// let v_map: Vec<_> = a.par_iter().map(|&x| x).collect();
///
/// assert_eq!(v_copied, vec![1, 2, 3]);
/// assert_eq!(v_map, vec![1, 2, 3]);
/// ```
fn copied<'a, T>(self) -> Copied<Self>
where
T: 'a + Copy + Send,
Self: ParallelIterator<Item = &'a T>,
{
Copied::new(self)
}
/// Applies `inspect_op` to a reference to each item of this iterator,
/// producing a new iterator passing through the original items. This is
/// often useful for debugging to see what's happening in iterator stages.
///
/// # Examples
///
/// ```
/// use rayon::prelude::*;
///
/// let a = [1, 4, 2, 3];
///
/// // this iterator sequence is complex.
/// let sum = a.par_iter()
/// .cloned()
/// .filter(|&x| x % 2 == 0)
/// .reduce(|| 0, |sum, i| sum + i);
///
/// println!("{}", sum);
///
/// // let's add some inspect() calls to investigate what's happening
/// let sum = a.par_iter()
/// .cloned()
/// .inspect(|x| println!("about to filter: {}", x))
/// .filter(|&x| x % 2 == 0)
/// .inspect(|x| println!("made it through filter: {}", x))
/// .reduce(|| 0, |sum, i| sum + i);
///
/// println!("{}", sum);
/// ```
fn inspect<OP>(self, inspect_op: OP) -> Inspect<Self, OP>
where
OP: Fn(&Self::Item) + Sync + Send,
{
Inspect::new(self, inspect_op)
}
/// Mutates each item of this iterator before yielding it.
///
/// # Examples
///
/// ```
/// use rayon::prelude::*;
///
/// let par_iter = (0..5).into_par_iter().update(|x| {*x *= 2;});
///
/// let doubles: Vec<_> = par_iter.collect();
///
/// assert_eq!(&doubles[..], &[0, 2, 4, 6, 8]);
/// ```
fn update<F>(self, update_op: F) -> Update<Self, F>
where
F: Fn(&mut Self::Item) + Sync + Send,
{
Update::new(self, update_op)
}
/// Applies `filter_op` to each item of this iterator, producing a new
/// iterator with only the items that gave `true` results.
///
/// # Examples
///
/// ```
/// use rayon::prelude::*;
///
/// let mut par_iter = (0..10).into_par_iter().filter(|x| x % 2 == 0);
///
/// let even_numbers: Vec<_> = par_iter.collect();
///
/// assert_eq!(&even_numbers[..], &[0, 2, 4, 6, 8]);
/// ```
fn filter<P>(self, filter_op: P) -> Filter<Self, P>
where
P: Fn(&Self::Item) -> bool + Sync + Send,
{
Filter::new(self, filter_op)
}
/// Applies `filter_op` to each item of this iterator to get an `Option`,
/// producing a new iterator with only the items from `Some` results.
///
/// # Examples
///
/// ```
/// use rayon::prelude::*;
///
/// let mut par_iter = (0..10).into_par_iter()
/// .filter_map(|x| {
/// if x % 2 == 0 { Some(x * 3) }
/// else { None }
/// });
///
/// let even_numbers: Vec<_> = par_iter.collect();
///
/// assert_eq!(&even_numbers[..], &[0, 6, 12, 18, 24]);
/// ```
fn filter_map<P, R>(self, filter_op: P) -> FilterMap<Self, P>
where
P: Fn(Self::Item) -> Option<R> + Sync + Send,
R: Send,
{
FilterMap::new(self, filter_op)
}
/// Applies `map_op` to each item of this iterator to get nested parallel iterators,
/// producing a new parallel iterator that flattens these back into one.
///
/// See also [`flat_map_iter`](#method.flat_map_iter).
///
/// # Examples
///
/// ```
/// use rayon::prelude::*;
///
/// let a = [[1, 2], [3, 4], [5, 6], [7, 8]];
///
/// let par_iter = a.par_iter().cloned().flat_map(|a| a.to_vec());
///
/// let vec: Vec<_> = par_iter.collect();
///
/// assert_eq!(&vec[..], &[1, 2, 3, 4, 5, 6, 7, 8]);
/// ```
fn flat_map<F, PI>(self, map_op: F) -> FlatMap<Self, F>
where
F: Fn(Self::Item) -> PI + Sync + Send,
PI: IntoParallelIterator,
{
FlatMap::new(self, map_op)
}
/// Applies `map_op` to each item of this iterator to get nested serial iterators,
/// producing a new parallel iterator that flattens these back into one.
///
/// # `flat_map_iter` versus `flat_map`
///
/// These two methods are similar but behave slightly differently. With [`flat_map`],
/// each of the nested iterators must be a parallel iterator, and they will be further
/// split up with nested parallelism. With `flat_map_iter`, each nested iterator is a
/// sequential `Iterator`, and we only parallelize _between_ them, while the items
/// produced by each nested iterator are processed sequentially.
///
/// When choosing between these methods, consider whether nested parallelism suits the
/// potential iterators at hand. If there's little computation involved, or its length
/// is much less than the outer parallel iterator, then it may perform better to avoid
/// the overhead of parallelism, just flattening sequentially with `flat_map_iter`.
/// If there is a lot of computation, potentially outweighing the outer parallel
/// iterator, then the nested parallelism of `flat_map` may be worthwhile.
///
/// [`flat_map`]: #method.flat_map
///
/// # Examples
///
/// ```
/// use rayon::prelude::*;
/// use std::cell::RefCell;
///
/// let a = [[1, 2], [3, 4], [5, 6], [7, 8]];
///
/// let par_iter = a.par_iter().flat_map_iter(|a| {
/// // The serial iterator doesn't have to be thread-safe, just its items.
/// let cell_iter = RefCell::new(a.iter().cloned());
/// std::iter::from_fn(move || cell_iter.borrow_mut().next())
/// });
///
/// let vec: Vec<_> = par_iter.collect();
///
/// assert_eq!(&vec[..], &[1, 2, 3, 4, 5, 6, 7, 8]);
/// ```
fn flat_map_iter<F, SI>(self, map_op: F) -> FlatMapIter<Self, F>
where
F: Fn(Self::Item) -> SI + Sync + Send,
SI: IntoIterator,
SI::Item: Send,
{
FlatMapIter::new(self, map_op)
}
/// An adaptor that flattens parallel-iterable `Item`s into one large iterator.
///
/// See also [`flatten_iter`](#method.flatten_iter).
///
/// # Examples
///
/// ```
/// use rayon::prelude::*;
///
/// let x: Vec<Vec<_>> = vec![vec![1, 2], vec![3, 4]];
/// let y: Vec<_> = x.into_par_iter().flatten().collect();
///
/// assert_eq!(y, vec![1, 2, 3, 4]);
/// ```
fn flatten(self) -> Flatten<Self>
where
Self::Item: IntoParallelIterator,
{
Flatten::new(self)
}
/// An adaptor that flattens serial-iterable `Item`s into one large iterator.
///
/// See also [`flatten`](#method.flatten) and the analagous comparison of
/// [`flat_map_iter` versus `flat_map`](#flat_map_iter-versus-flat_map).
///
/// # Examples
///
/// ```
/// use rayon::prelude::*;
///
/// let x: Vec<Vec<_>> = vec![vec![1, 2], vec![3, 4]];
/// let iters: Vec<_> = x.into_iter().map(Vec::into_iter).collect();
/// let y: Vec<_> = iters.into_par_iter().flatten_iter().collect();
///
/// assert_eq!(y, vec![1, 2, 3, 4]);
/// ```
fn flatten_iter(self) -> FlattenIter<Self>
where
Self::Item: IntoIterator,
<Self::Item as IntoIterator>::Item: Send,
{
FlattenIter::new(self)
}
/// Reduces the items in the iterator into one item using `op`.
/// The argument `identity` should be a closure that can produce
/// "identity" value which may be inserted into the sequence as
/// needed to create opportunities for parallel execution. So, for
/// example, if you are doing a summation, then `identity()` ought
/// to produce something that represents the zero for your type
/// (but consider just calling `sum()` in that case).
///
/// # Examples
///
/// ```
/// // Iterate over a sequence of pairs `(x0, y0), ..., (xN, yN)`
/// // and use reduce to compute one pair `(x0 + ... + xN, y0 + ... + yN)`
/// // where the first/second elements are summed separately.
/// use rayon::prelude::*;
/// let sums = [(0, 1), (5, 6), (16, 2), (8, 9)]
/// .par_iter() // iterating over &(i32, i32)
/// .cloned() // iterating over (i32, i32)
/// .reduce(|| (0, 0), // the "identity" is 0 in both columns
/// |a, b| (a.0 + b.0, a.1 + b.1));
/// assert_eq!(sums, (0 + 5 + 16 + 8, 1 + 6 + 2 + 9));
/// ```
///
/// **Note:** unlike a sequential `fold` operation, the order in
/// which `op` will be applied to reduce the result is not fully
/// specified. So `op` should be [associative] or else the results
/// will be non-deterministic. And of course `identity()` should
/// produce a true identity.
///
/// [associative]: https://en.wikipedia.org/wiki/Associative_property
fn reduce<OP, ID>(self, identity: ID, op: OP) -> Self::Item
where
OP: Fn(Self::Item, Self::Item) -> Self::Item + Sync + Send,
ID: Fn() -> Self::Item + Sync + Send,
{
reduce::reduce(self, identity, op)
}
/// Reduces the items in the iterator into one item using `op`.
/// If the iterator is empty, `None` is returned; otherwise,
/// `Some` is returned.
///
/// This version of `reduce` is simple but somewhat less
/// efficient. If possible, it is better to call `reduce()`, which
/// requires an identity element.
///
/// # Examples
///
/// ```
/// use rayon::prelude::*;
/// let sums = [(0, 1), (5, 6), (16, 2), (8, 9)]
/// .par_iter() // iterating over &(i32, i32)
/// .cloned() // iterating over (i32, i32)
/// .reduce_with(|a, b| (a.0 + b.0, a.1 + b.1))
/// .unwrap();
/// assert_eq!(sums, (0 + 5 + 16 + 8, 1 + 6 + 2 + 9));
/// ```
///
/// **Note:** unlike a sequential `fold` operation, the order in
/// which `op` will be applied to reduce the result is not fully
/// specified. So `op` should be [associative] or else the results
/// will be non-deterministic.
///
/// [associative]: https://en.wikipedia.org/wiki/Associative_property
fn reduce_with<OP>(self, op: OP) -> Option<Self::Item>
where
OP: Fn(Self::Item, Self::Item) -> Self::Item + Sync + Send,
{
fn opt_fold<T>(op: impl Fn(T, T) -> T) -> impl Fn(Option<T>, T) -> Option<T> {
move |opt_a, b| match opt_a {
Some(a) => Some(op(a, b)),
None => Some(b),
}
}
fn opt_reduce<T>(op: impl Fn(T, T) -> T) -> impl Fn(Option<T>, Option<T>) -> Option<T> {
move |opt_a, opt_b| match (opt_a, opt_b) {
(Some(a), Some(b)) => Some(op(a, b)),
(Some(v), None) | (None, Some(v)) => Some(v),
(None, None) => None,
}
}
self.fold(<_>::default, opt_fold(&op))
.reduce(<_>::default, opt_reduce(&op))
}
/// Reduces the items in the iterator into one item using a fallible `op`.
/// The `identity` argument is used the same way as in [`reduce()`].
///
/// [`reduce()`]: #method.reduce
///
/// If a `Result::Err` or `Option::None` item is found, or if `op` reduces
/// to one, we will attempt to stop processing the rest of the items in the
/// iterator as soon as possible, and we will return that terminating value.
/// Otherwise, we will return the final reduced `Result::Ok(T)` or
/// `Option::Some(T)`. If there are multiple errors in parallel, it is not
/// specified which will be returned.
///
/// # Examples
///
/// ```
/// use rayon::prelude::*;
///
/// // Compute the sum of squares, being careful about overflow.
/// fn sum_squares<I: IntoParallelIterator<Item = i32>>(iter: I) -> Option<i32> {
/// iter.into_par_iter()
/// .map(|i| i.checked_mul(i)) // square each item,
/// .try_reduce(|| 0, i32::checked_add) // and add them up!
/// }
/// assert_eq!(sum_squares(0..5), Some(0 + 1 + 4 + 9 + 16));
///
/// // The sum might overflow
/// assert_eq!(sum_squares(0..10_000), None);
///
/// // Or the squares might overflow before it even reaches `try_reduce`
/// assert_eq!(sum_squares(1_000_000..1_000_001), None);
/// ```
fn try_reduce<T, OP, ID>(self, identity: ID, op: OP) -> Self::Item
where
OP: Fn(T, T) -> Self::Item + Sync + Send,
ID: Fn() -> T + Sync + Send,
Self::Item: Try<Ok = T>,
{
try_reduce::try_reduce(self, identity, op)
}
/// Reduces the items in the iterator into one item using a fallible `op`.
///
/// Like [`reduce_with()`], if the iterator is empty, `None` is returned;
/// otherwise, `Some` is returned. Beyond that, it behaves like
/// [`try_reduce()`] for handling `Err`/`None`.
///
/// [`reduce_with()`]: #method.reduce_with
/// [`try_reduce()`]: #method.try_reduce
///
/// For instance, with `Option` items, the return value may be:
/// - `None`, the iterator was empty
/// - `Some(None)`, we stopped after encountering `None`.
/// - `Some(Some(x))`, the entire iterator reduced to `x`.
///
/// With `Result` items, the nesting is more obvious:
/// - `None`, the iterator was empty
/// - `Some(Err(e))`, we stopped after encountering an error `e`.
/// - `Some(Ok(x))`, the entire iterator reduced to `x`.
///
/// # Examples
///
/// ```
/// use rayon::prelude::*;
///
/// let files = ["/dev/null", "/does/not/exist"];
///
/// // Find the biggest file
/// files.into_par_iter()
/// .map(|path| std::fs::metadata(path).map(|m| (path, m.len())))
/// .try_reduce_with(|a, b| {
/// Ok(if a.1 >= b.1 { a } else { b })
/// })
/// .expect("Some value, since the iterator is not empty")
/// .expect_err("not found");
/// ```
fn try_reduce_with<T, OP>(self, op: OP) -> Option<Self::Item>
where
OP: Fn(T, T) -> Self::Item + Sync + Send,
Self::Item: Try<Ok = T>,
{
try_reduce_with::try_reduce_with(self, op)
}
/// Parallel fold is similar to sequential fold except that the
/// sequence of items may be subdivided before it is
/// folded. Consider a list of numbers like `22 3 77 89 46`. If
/// you used sequential fold to add them (`fold(0, |a,b| a+b)`,
/// you would wind up first adding 0 + 22, then 22 + 3, then 25 +
/// 77, and so forth. The **parallel fold** works similarly except
/// that it first breaks up your list into sublists, and hence
/// instead of yielding up a single sum at the end, it yields up
/// multiple sums. The number of results is nondeterministic, as
/// is the point where the breaks occur.
///
/// So if did the same parallel fold (`fold(0, |a,b| a+b)`) on
/// our example list, we might wind up with a sequence of two numbers,
/// like so:
///
/// ```notrust
/// 22 3 77 89 46
/// | |
/// 102 135
/// ```
///
/// Or perhaps these three numbers:
///
/// ```notrust
/// 22 3 77 89 46
/// | | |
/// 102 89 46
/// ```
///
/// In general, Rayon will attempt to find good breaking points
/// that keep all of your cores busy.
///
/// ### Fold versus reduce
///
/// The `fold()` and `reduce()` methods each take an identity element
/// and a combining function, but they operate rather differently.
///
/// `reduce()` requires that the identity function has the same
/// type as the things you are iterating over, and it fully
/// reduces the list of items into a single item. So, for example,
/// imagine we are iterating over a list of bytes `bytes: [128_u8,
/// 64_u8, 64_u8]`. If we used `bytes.reduce(|| 0_u8, |a: u8, b:
/// u8| a + b)`, we would get an overflow. This is because `0`,
/// `a`, and `b` here are all bytes, just like the numbers in the
/// list (I wrote the types explicitly above, but those are the
/// only types you can use). To avoid the overflow, we would need
/// to do something like `bytes.map(|b| b as u32).reduce(|| 0, |a,
/// b| a + b)`, in which case our result would be `256`.
///
/// In contrast, with `fold()`, the identity function does not
/// have to have the same type as the things you are iterating
/// over, and you potentially get back many results. So, if we
/// continue with the `bytes` example from the previous paragraph,
/// we could do `bytes.fold(|| 0_u32, |a, b| a + (b as u32))` to
/// convert our bytes into `u32`. And of course we might not get
/// back a single sum.
///
/// There is a more subtle distinction as well, though it's
/// actually implied by the above points. When you use `reduce()`,
/// your reduction function is sometimes called with values that
/// were never part of your original parallel iterator (for
/// example, both the left and right might be a partial sum). With
/// `fold()`, in contrast, the left value in the fold function is
/// always the accumulator, and the right value is always from
/// your original sequence.
///
/// ### Fold vs Map/Reduce
///
/// Fold makes sense if you have some operation where it is
/// cheaper to create groups of elements at a time. For example,
/// imagine collecting characters into a string. If you were going
/// to use map/reduce, you might try this:
///
/// ```
/// use rayon::prelude::*;
///
/// let s =
/// ['a', 'b', 'c', 'd', 'e']
/// .par_iter()
/// .map(|c: &char| format!("{}", c))
/// .reduce(|| String::new(),
/// |mut a: String, b: String| { a.push_str(&b); a });
///
/// assert_eq!(s, "abcde");
/// ```
///
/// Because reduce produces the same type of element as its input,
/// you have to first map each character into a string, and then
/// you can reduce them. This means we create one string per
/// element in our iterator -- not so great. Using `fold`, we can
/// do this instead:
///
/// ```
/// use rayon::prelude::*;
///
/// let s =
/// ['a', 'b', 'c', 'd', 'e']
/// .par_iter()
/// .fold(|| String::new(),
/// |mut s: String, c: &char| { s.push(*c); s })
/// .reduce(|| String::new(),
/// |mut a: String, b: String| { a.push_str(&b); a });
///
/// assert_eq!(s, "abcde");
/// ```
///
/// Now `fold` will process groups of our characters at a time,
/// and we only make one string per group. We should wind up with
/// some small-ish number of strings roughly proportional to the
/// number of CPUs you have (it will ultimately depend on how busy
/// your processors are). Note that we still need to do a reduce
/// afterwards to combine those groups of strings into a single
/// string.
///
/// You could use a similar trick to save partial results (e.g., a
/// cache) or something similar.
///
/// ### Combining fold with other operations
///
/// You can combine `fold` with `reduce` if you want to produce a
/// single value. This is then roughly equivalent to a map/reduce
/// combination in effect:
///
/// ```
/// use rayon::prelude::*;
///
/// let bytes = 0..22_u8;
/// let sum = bytes.into_par_iter()
/// .fold(|| 0_u32, |a: u32, b: u8| a + (b as u32))
/// .sum::<u32>();
///
/// assert_eq!(sum, (0..22).sum()); // compare to sequential
/// ```
fn fold<T, ID, F>(self, identity: ID, fold_op: F) -> Fold<Self, ID, F>
where
F: Fn(T, Self::Item) -> T + Sync + Send,
ID: Fn() -> T + Sync + Send,
T: Send,
{
Fold::new(self, identity, fold_op)
}
/// Applies `fold_op` to the given `init` value with each item of this
/// iterator, finally producing the value for further use.
///
/// This works essentially like `fold(|| init.clone(), fold_op)`, except
/// it doesn't require the `init` type to be `Sync`, nor any other form
/// of added synchronization.
///
/// # Examples
///
/// ```
/// use rayon::prelude::*;
///
/// let bytes = 0..22_u8;
/// let sum = bytes.into_par_iter()
/// .fold_with(0_u32, |a: u32, b: u8| a + (b as u32))
/// .sum::<u32>();
///
/// assert_eq!(sum, (0..22).sum()); // compare to sequential
/// ```
fn fold_with<F, T>(self, init: T, fold_op: F) -> FoldWith<Self, T, F>
where
F: Fn(T, Self::Item) -> T + Sync + Send,
T: Send + Clone,
{
FoldWith::new(self, init, fold_op)
}
/// Performs a fallible parallel fold.
///
/// This is a variation of [`fold()`] for operations which can fail with
/// `Option::None` or `Result::Err`. The first such failure stops
/// processing the local set of items, without affecting other folds in the
/// iterator's subdivisions.
///
/// Often, `try_fold()` will be followed by [`try_reduce()`]
/// for a final reduction and global short-circuiting effect.
///
/// [`fold()`]: #method.fold
/// [`try_reduce()`]: #method.try_reduce
///
/// # Examples
///
/// ```
/// use rayon::prelude::*;
///
/// let bytes = 0..22_u8;
/// let sum = bytes.into_par_iter()
/// .try_fold(|| 0_u32, |a: u32, b: u8| a.checked_add(b as u32))
/// .try_reduce(|| 0, u32::checked_add);
///
/// assert_eq!(sum, Some((0..22).sum())); // compare to sequential
/// ```
fn try_fold<T, R, ID, F>(self, identity: ID, fold_op: F) -> TryFold<Self, R, ID, F>
where
F: Fn(T, Self::Item) -> R + Sync + Send,
ID: Fn() -> T + Sync + Send,
R: Try<Ok = T> + Send,
{
TryFold::new(self, identity, fold_op)
}
/// Performs a fallible parallel fold with a cloneable `init` value.
///
/// This combines the `init` semantics of [`fold_with()`] and the failure
/// semantics of [`try_fold()`].
///
/// [`fold_with()`]: #method.fold_with
/// [`try_fold()`]: #method.try_fold
///
/// ```
/// use rayon::prelude::*;
///
/// let bytes = 0..22_u8;
/// let sum = bytes.into_par_iter()
/// .try_fold_with(0_u32, |a: u32, b: u8| a.checked_add(b as u32))
/// .try_reduce(|| 0, u32::checked_add);
///
/// assert_eq!(sum, Some((0..22).sum())); // compare to sequential
/// ```
fn try_fold_with<F, T, R>(self, init: T, fold_op: F) -> TryFoldWith<Self, R, F>
where
F: Fn(T, Self::Item) -> R + Sync + Send,
R: Try<Ok = T> + Send,
T: Clone + Send,
{
TryFoldWith::new(self, init, fold_op)
}
/// Sums up the items in the iterator.
///
/// Note that the order in items will be reduced is not specified,
/// so if the `+` operator is not truly [associative] \(as is the
/// case for floating point numbers), then the results are not
/// fully deterministic.
///
/// [associative]: https://en.wikipedia.org/wiki/Associative_property
///
/// Basically equivalent to `self.reduce(|| 0, |a, b| a + b)`,
/// except that the type of `0` and the `+` operation may vary
/// depending on the type of value being produced.
///
/// # Examples
///
/// ```
/// use rayon::prelude::*;
///
/// let a = [1, 5, 7];
///
/// let sum: i32 = a.par_iter().sum();
///
/// assert_eq!(sum, 13);
/// ```
fn sum<S>(self) -> S
where
S: Send + Sum<Self::Item> + Sum<S>,
{
sum::sum(self)
}
/// Multiplies all the items in the iterator.
///
/// Note that the order in items will be reduced is not specified,
/// so if the `*` operator is not truly [associative] \(as is the
/// case for floating point numbers), then the results are not
/// fully deterministic.
///
/// [associative]: https://en.wikipedia.org/wiki/Associative_property
///
/// Basically equivalent to `self.reduce(|| 1, |a, b| a * b)`,
/// except that the type of `1` and the `*` operation may vary
/// depending on the type of value being produced.
///
/// # Examples
///
/// ```
/// use rayon::prelude::*;
///
/// fn factorial(n: u32) -> u32 {
/// (1..n+1).into_par_iter().product()
/// }
///
/// assert_eq!(factorial(0), 1);
/// assert_eq!(factorial(1), 1);
/// assert_eq!(factorial(5), 120);
/// ```
fn product<P>(self) -> P
where
P: Send + Product<Self::Item> + Product<P>,
{
product::product(self)
}
/// Computes the minimum of all the items in the iterator. If the
/// iterator is empty, `None` is returned; otherwise, `Some(min)`
/// is returned.
///
/// Note that the order in which the items will be reduced is not
/// specified, so if the `Ord` impl is not truly associative, then
/// the results are not deterministic.
///
/// Basically equivalent to `self.reduce_with(|a, b| cmp::min(a, b))`.
///
/// # Examples
///
/// ```
/// use rayon::prelude::*;
///
/// let a = [45, 74, 32];
///
/// assert_eq!(a.par_iter().min(), Some(&32));
///
/// let b: [i32; 0] = [];
///
/// assert_eq!(b.par_iter().min(), None);
/// ```
fn min(self) -> Option<Self::Item>
where
Self::Item: Ord,
{
self.reduce_with(cmp::min)
}
/// Computes the minimum of all the items in the iterator with respect to
/// the given comparison function. If the iterator is empty, `None` is
/// returned; otherwise, `Some(min)` is returned.
///
/// Note that the order in which the items will be reduced is not
/// specified, so if the comparison function is not associative, then
/// the results are not deterministic.
///
/// # Examples
///
/// ```
/// use rayon::prelude::*;
///
/// let a = [-3_i32, 77, 53, 240, -1];
///
/// assert_eq!(a.par_iter().min_by(|x, y| x.cmp(y)), Some(&-3));
/// ```
fn min_by<F>(self, f: F) -> Option<Self::Item>
where
F: Sync + Send + Fn(&Self::Item, &Self::Item) -> Ordering,
{
fn min<T>(f: impl Fn(&T, &T) -> Ordering) -> impl Fn(T, T) -> T {
move |a, b| match f(&a, &b) {
Ordering::Greater => b,
_ => a,
}
}
self.reduce_with(min(f))
}
/// Computes the item that yields the minimum value for the given
/// function. If the iterator is empty, `None` is returned;
/// otherwise, `Some(item)` is returned.
///
/// Note that the order in which the items will be reduced is not
/// specified, so if the `Ord` impl is not truly associative, then
/// the results are not deterministic.
///
/// # Examples
///
/// ```
/// use rayon::prelude::*;
///
/// let a = [-3_i32, 34, 2, 5, -10, -3, -23];
///
/// assert_eq!(a.par_iter().min_by_key(|x| x.abs()), Some(&2));
/// ```
fn min_by_key<K, F>(self, f: F) -> Option<Self::Item>
where
K: Ord + Send,
F: Sync + Send + Fn(&Self::Item) -> K,
{
fn key<T, K>(f: impl Fn(&T) -> K) -> impl Fn(T) -> (K, T) {
move |x| (f(&x), x)
}
fn min_key<T, K: Ord>(a: (K, T), b: (K, T)) -> (K, T) {
match (a.0).cmp(&b.0) {
Ordering::Greater => b,
_ => a,
}
}
let (_, x) = self.map(key(f)).reduce_with(min_key)?;
Some(x)
}
/// Computes the maximum of all the items in the iterator. If the
/// iterator is empty, `None` is returned; otherwise, `Some(max)`
/// is returned.
///
/// Note that the order in which the items will be reduced is not
/// specified, so if the `Ord` impl is not truly associative, then
/// the results are not deterministic.
///
/// Basically equivalent to `self.reduce_with(|a, b| cmp::max(a, b))`.
///
/// # Examples
///
/// ```
/// use rayon::prelude::*;
///
/// let a = [45, 74, 32];
///
/// assert_eq!(a.par_iter().max(), Some(&74));
///
/// let b: [i32; 0] = [];
///
/// assert_eq!(b.par_iter().max(), None);
/// ```
fn max(self) -> Option<Self::Item>
where
Self::Item: Ord,
{
self.reduce_with(cmp::max)
}
/// Computes the maximum of all the items in the iterator with respect to
/// the given comparison function. If the iterator is empty, `None` is
/// returned; otherwise, `Some(min)` is returned.
///
/// Note that the order in which the items will be reduced is not
/// specified, so if the comparison function is not associative, then
/// the results are not deterministic.
///
/// # Examples
///
/// ```
/// use rayon::prelude::*;
///
/// let a = [-3_i32, 77, 53, 240, -1];
///
/// assert_eq!(a.par_iter().max_by(|x, y| x.abs().cmp(&y.abs())), Some(&240));
/// ```
fn max_by<F>(self, f: F) -> Option<Self::Item>
where
F: Sync + Send + Fn(&Self::Item, &Self::Item) -> Ordering,
{
fn max<T>(f: impl Fn(&T, &T) -> Ordering) -> impl Fn(T, T) -> T {
move |a, b| match f(&a, &b) {
Ordering::Greater => a,
_ => b,
}
}
self.reduce_with(max(f))
}
/// Computes the item that yields the maximum value for the given
/// function. If the iterator is empty, `None` is returned;
/// otherwise, `Some(item)` is returned.
///
/// Note that the order in which the items will be reduced is not
/// specified, so if the `Ord` impl is not truly associative, then
/// the results are not deterministic.
///
/// # Examples
///
/// ```
/// use rayon::prelude::*;
///
/// let a = [-3_i32, 34, 2, 5, -10, -3, -23];
///
/// assert_eq!(a.par_iter().max_by_key(|x| x.abs()), Some(&34));
/// ```
fn max_by_key<K, F>(self, f: F) -> Option<Self::Item>
where
K: Ord + Send,
F: Sync + Send + Fn(&Self::Item) -> K,
{
fn key<T, K>(f: impl Fn(&T) -> K) -> impl Fn(T) -> (K, T) {
move |x| (f(&x), x)
}
fn max_key<T, K: Ord>(a: (K, T), b: (K, T)) -> (K, T) {
match (a.0).cmp(&b.0) {
Ordering::Greater => a,
_ => b,
}
}
let (_, x) = self.map(key(f)).reduce_with(max_key)?;
Some(x)
}
/// Takes two iterators and creates a new iterator over both.
///
/// # Examples
///
/// ```
/// use rayon::prelude::*;
///
/// let a = [0, 1, 2];
/// let b = [9, 8, 7];
///
/// let par_iter = a.par_iter().chain(b.par_iter());
///
/// let chained: Vec<_> = par_iter.cloned().collect();
///
/// assert_eq!(&chained[..], &[0, 1, 2, 9, 8, 7]);
/// ```
fn chain<C>(self, chain: C) -> Chain<Self, C::Iter>
where
C: IntoParallelIterator<Item = Self::Item>,
{
Chain::new(self, chain.into_par_iter())
}
/// Searches for **some** item in the parallel iterator that
/// matches the given predicate and returns it. This operation
/// is similar to [`find` on sequential iterators][find] but
/// the item returned may not be the **first** one in the parallel
/// sequence which matches, since we search the entire sequence in parallel.
///
/// Once a match is found, we will attempt to stop processing
/// the rest of the items in the iterator as soon as possible
/// (just as `find` stops iterating once a match is found).
///
/// [find]: https://doc.rust-lang.org/std/iter/trait.Iterator.html#method.find
///
/// # Examples
///
/// ```
/// use rayon::prelude::*;
///
/// let a = [1, 2, 3, 3];
///
/// assert_eq!(a.par_iter().find_any(|&&x| x == 3), Some(&3));
///
/// assert_eq!(a.par_iter().find_any(|&&x| x == 100), None);
/// ```
fn find_any<P>(self, predicate: P) -> Option<Self::Item>
where
P: Fn(&Self::Item) -> bool + Sync + Send,
{
find::find(self, predicate)
}
/// Searches for the sequentially **first** item in the parallel iterator
/// that matches the given predicate and returns it.
///
/// Once a match is found, all attempts to the right of the match
/// will be stopped, while attempts to the left must continue in case
/// an earlier match is found.
///
/// Note that not all parallel iterators have a useful order, much like
/// sequential `HashMap` iteration, so "first" may be nebulous. If you
/// just want the first match that discovered anywhere in the iterator,
/// `find_any` is a better choice.
///
/// # Examples
///
/// ```
/// use rayon::prelude::*;
///
/// let a = [1, 2, 3, 3];
///
/// assert_eq!(a.par_iter().find_first(|&&x| x == 3), Some(&3));
///
/// assert_eq!(a.par_iter().find_first(|&&x| x == 100), None);
/// ```
fn find_first<P>(self, predicate: P) -> Option<Self::Item>
where
P: Fn(&Self::Item) -> bool + Sync + Send,
{
find_first_last::find_first(self, predicate)
}
/// Searches for the sequentially **last** item in the parallel iterator
/// that matches the given predicate and returns it.
///
/// Once a match is found, all attempts to the left of the match
/// will be stopped, while attempts to the right must continue in case
/// a later match is found.
///
/// Note that not all parallel iterators have a useful order, much like
/// sequential `HashMap` iteration, so "last" may be nebulous. When the
/// order doesn't actually matter to you, `find_any` is a better choice.
///
/// # Examples
///
/// ```
/// use rayon::prelude::*;
///
/// let a = [1, 2, 3, 3];
///
/// assert_eq!(a.par_iter().find_last(|&&x| x == 3), Some(&3));
///
/// assert_eq!(a.par_iter().find_last(|&&x| x == 100), None);
/// ```
fn find_last<P>(self, predicate: P) -> Option<Self::Item>
where
P: Fn(&Self::Item) -> bool + Sync + Send,
{
find_first_last::find_last(self, predicate)
}
/// Applies the given predicate to the items in the parallel iterator
/// and returns **any** non-None result of the map operation.
///
/// Once a non-None value is produced from the map operation, we will
/// attempt to stop processing the rest of the items in the iterator
/// as soon as possible.
///
/// Note that this method only returns **some** item in the parallel
/// iterator that is not None from the map predicate. The item returned
/// may not be the **first** non-None value produced in the parallel
/// sequence, since the entire sequence is mapped over in parallel.
///
/// # Examples
///
/// ```
/// use rayon::prelude::*;
///
/// let c = ["lol", "NaN", "5", "5"];
///
/// let found_number = c.par_iter().find_map_any(|s| s.parse().ok());
///
/// assert_eq!(found_number, Some(5));
/// ```
fn find_map_any<P, R>(self, predicate: P) -> Option<R>
where
P: Fn(Self::Item) -> Option<R> + Sync + Send,
R: Send,
{
fn yes<T>(_: &T) -> bool {
true
}
self.filter_map(predicate).find_any(yes)
}
/// Applies the given predicate to the items in the parallel iterator and
/// returns the sequentially **first** non-None result of the map operation.
///
/// Once a non-None value is produced from the map operation, all attempts
/// to the right of the match will be stopped, while attempts to the left
/// must continue in case an earlier match is found.
///
/// Note that not all parallel iterators have a useful order, much like
/// sequential `HashMap` iteration, so "first" may be nebulous. If you
/// just want the first non-None value discovered anywhere in the iterator,
/// `find_map_any` is a better choice.
///
/// # Examples
///
/// ```
/// use rayon::prelude::*;
///
/// let c = ["lol", "NaN", "2", "5"];
///
/// let first_number = c.par_iter().find_map_first(|s| s.parse().ok());
///
/// assert_eq!(first_number, Some(2));
/// ```
fn find_map_first<P, R>(self, predicate: P) -> Option<R>
where
P: Fn(Self::Item) -> Option<R> + Sync + Send,
R: Send,
{
fn yes<T>(_: &T) -> bool {
true
}
self.filter_map(predicate).find_first(yes)
}
/// Applies the given predicate to the items in the parallel iterator and
/// returns the sequentially **last** non-None result of the map operation.
///
/// Once a non-None value is produced from the map operation, all attempts
/// to the left of the match will be stopped, while attempts to the right
/// must continue in case a later match is found.
///
/// Note that not all parallel iterators have a useful order, much like
/// sequential `HashMap` iteration, so "first" may be nebulous. If you
/// just want the first non-None value discovered anywhere in the iterator,
/// `find_map_any` is a better choice.
///
/// # Examples
///
/// ```
/// use rayon::prelude::*;
///
/// let c = ["lol", "NaN", "2", "5"];
///
/// let last_number = c.par_iter().find_map_last(|s| s.parse().ok());
///
/// assert_eq!(last_number, Some(5));
/// ```
fn find_map_last<P, R>(self, predicate: P) -> Option<R>
where
P: Fn(Self::Item) -> Option<R> + Sync + Send,
R: Send,
{
fn yes<T>(_: &T) -> bool {
true
}
self.filter_map(predicate).find_last(yes)
}
#[doc(hidden)]
#[deprecated(note = "parallel `find` does not search in order -- use `find_any`, \\
`find_first`, or `find_last`")]
fn find<P>(self, predicate: P) -> Option<Self::Item>
where
P: Fn(&Self::Item) -> bool + Sync + Send,
{
self.find_any(predicate)
}
/// Searches for **some** item in the parallel iterator that
/// matches the given predicate, and if so returns true. Once
/// a match is found, we'll attempt to stop process the rest
/// of the items. Proving that there's no match, returning false,
/// does require visiting every item.
///
/// # Examples
///
/// ```
/// use rayon::prelude::*;
///
/// let a = [0, 12, 3, 4, 0, 23, 0];
///
/// let is_valid = a.par_iter().any(|&x| x > 10);
///
/// assert!(is_valid);
/// ```
fn any<P>(self, predicate: P) -> bool
where
P: Fn(Self::Item) -> bool + Sync + Send,
{
self.map(predicate).find_any(bool::clone).is_some()
}
/// Tests that every item in the parallel iterator matches the given
/// predicate, and if so returns true. If a counter-example is found,
/// we'll attempt to stop processing more items, then return false.
///
/// # Examples
///
/// ```
/// use rayon::prelude::*;
///
/// let a = [0, 12, 3, 4, 0, 23, 0];
///
/// let is_valid = a.par_iter().all(|&x| x > 10);
///
/// assert!(!is_valid);
/// ```
fn all<P>(self, predicate: P) -> bool
where
P: Fn(Self::Item) -> bool + Sync + Send,
{
#[inline]
fn is_false(x: &bool) -> bool {
!x
}
self.map(predicate).find_any(is_false).is_none()
}
/// Creates an iterator over the `Some` items of this iterator, halting
/// as soon as any `None` is found.
///
/// # Examples
///
/// ```
/// use rayon::prelude::*;
/// use std::sync::atomic::{AtomicUsize, Ordering};
///
/// let counter = AtomicUsize::new(0);
/// let value = (0_i32..2048)
/// .into_par_iter()
/// .map(|x| {
/// counter.fetch_add(1, Ordering::SeqCst);
/// if x < 1024 { Some(x) } else { None }
/// })
/// .while_some()
/// .max();
///
/// assert!(value < Some(1024));
/// assert!(counter.load(Ordering::SeqCst) < 2048); // should not have visited every single one
/// ```
fn while_some<T>(self) -> WhileSome<Self>
where
Self: ParallelIterator<Item = Option<T>>,
T: Send,
{
WhileSome::new(self)
}
/// Wraps an iterator with a fuse in case of panics, to halt all threads
/// as soon as possible.
///
/// Panics within parallel iterators are always propagated to the caller,
/// but they don't always halt the rest of the iterator right away, due to
/// the internal semantics of [`join`]. This adaptor makes a greater effort
/// to stop processing other items sooner, with the cost of additional
/// synchronization overhead, which may also inhibit some optimizations.
///
/// [`join`]: ../fn.join.html#panics
///
/// # Examples
///
/// If this code didn't use `panic_fuse()`, it would continue processing
/// many more items in other threads (with long sleep delays) before the
/// panic is finally propagated.
///
/// ```should_panic
/// use rayon::prelude::*;
/// use std::{thread, time};
///
/// (0..1_000_000)
/// .into_par_iter()
/// .panic_fuse()
/// .for_each(|i| {
/// // simulate some work
/// thread::sleep(time::Duration::from_secs(1));
/// assert!(i > 0); // oops!
/// });
/// ```
fn panic_fuse(self) -> PanicFuse<Self> {
PanicFuse::new(self)
}
/// Creates a fresh collection containing all the elements produced
/// by this parallel iterator.
///
/// You may prefer [`collect_into_vec()`] implemented on
/// [`IndexedParallelIterator`], if your underlying iterator also implements
/// it. [`collect_into_vec()`] allocates efficiently with precise knowledge
/// of how many elements the iterator contains, and even allows you to reuse
/// an existing vector's backing store rather than allocating a fresh vector.
///
/// [`IndexedParallelIterator`]: trait.IndexedParallelIterator.html
/// [`collect_into_vec()`]:
/// trait.IndexedParallelIterator.html#method.collect_into_vec
///
/// # Examples
///
/// ```
/// use rayon::prelude::*;
///
/// let sync_vec: Vec<_> = (0..100).into_iter().collect();
///
/// let async_vec: Vec<_> = (0..100).into_par_iter().collect();
///
/// assert_eq!(sync_vec, async_vec);
/// ```
///
/// You can collect a pair of collections like [`unzip`](#method.unzip)
/// for paired items:
///
/// ```
/// use rayon::prelude::*;
///
/// let a = [(0, 1), (1, 2), (2, 3), (3, 4)];
/// let (first, second): (Vec<_>, Vec<_>) = a.into_par_iter().collect();
///
/// assert_eq!(first, [0, 1, 2, 3]);
/// assert_eq!(second, [1, 2, 3, 4]);
/// ```
///
/// Or like [`partition_map`](#method.partition_map) for `Either` items:
///
/// ```
/// use rayon::prelude::*;
/// use rayon::iter::Either;
///
/// let (left, right): (Vec<_>, Vec<_>) = (0..8).into_par_iter().map(|x| {
/// if x % 2 == 0 {
/// Either::Left(x * 4)
/// } else {
/// Either::Right(x * 3)
/// }
/// }).collect();
///
/// assert_eq!(left, [0, 8, 16, 24]);
/// assert_eq!(right, [3, 9, 15, 21]);
/// ```
///
/// You can even collect an arbitrarily-nested combination of pairs and `Either`:
///
/// ```
/// use rayon::prelude::*;
/// use rayon::iter::Either;
///
/// let (first, (left, right)): (Vec<_>, (Vec<_>, Vec<_>))
/// = (0..8).into_par_iter().map(|x| {
/// if x % 2 == 0 {
/// (x, Either::Left(x * 4))
/// } else {
/// (-x, Either::Right(x * 3))
/// }
/// }).collect();
///
/// assert_eq!(first, [0, -1, 2, -3, 4, -5, 6, -7]);
/// assert_eq!(left, [0, 8, 16, 24]);
/// assert_eq!(right, [3, 9, 15, 21]);
/// ```
///
/// All of that can _also_ be combined with short-circuiting collection of
/// `Result` or `Option` types:
///
/// ```
/// use rayon::prelude::*;
/// use rayon::iter::Either;
///
/// let result: Result<(Vec<_>, (Vec<_>, Vec<_>)), _>
/// = (0..8).into_par_iter().map(|x| {
/// if x > 5 {
/// Err(x)
/// } else if x % 2 == 0 {
/// Ok((x, Either::Left(x * 4)))
/// } else {
/// Ok((-x, Either::Right(x * 3)))
/// }
/// }).collect();
///
/// let error = result.unwrap_err();
/// assert!(error == 6 || error == 7);
/// ```
fn collect<C>(self) -> C
where
C: FromParallelIterator<Self::Item>,
{
C::from_par_iter(self)
}
/// Unzips the items of a parallel iterator into a pair of arbitrary
/// `ParallelExtend` containers.
///
/// You may prefer to use `unzip_into_vecs()`, which allocates more
/// efficiently with precise knowledge of how many elements the
/// iterator contains, and even allows you to reuse existing
/// vectors' backing stores rather than allocating fresh vectors.
///
/// # Examples
///
/// ```
/// use rayon::prelude::*;
///
/// let a = [(0, 1), (1, 2), (2, 3), (3, 4)];
///
/// let (left, right): (Vec<_>, Vec<_>) = a.par_iter().cloned().unzip();
///
/// assert_eq!(left, [0, 1, 2, 3]);
/// assert_eq!(right, [1, 2, 3, 4]);
/// ```
///
/// Nested pairs can be unzipped too.
///
/// ```
/// use rayon::prelude::*;
///
/// let (values, (squares, cubes)): (Vec<_>, (Vec<_>, Vec<_>)) = (0..4).into_par_iter()
/// .map(|i| (i, (i * i, i * i * i)))
/// .unzip();
///
/// assert_eq!(values, [0, 1, 2, 3]);
/// assert_eq!(squares, [0, 1, 4, 9]);
/// assert_eq!(cubes, [0, 1, 8, 27]);
/// ```
fn unzip<A, B, FromA, FromB>(self) -> (FromA, FromB)
where
Self: ParallelIterator<Item = (A, B)>,
FromA: Default + Send + ParallelExtend<A>,
FromB: Default + Send + ParallelExtend<B>,
A: Send,
B: Send,
{
unzip::unzip(self)
}
/// Partitions the items of a parallel iterator into a pair of arbitrary
/// `ParallelExtend` containers. Items for which the `predicate` returns
/// true go into the first container, and the rest go into the second.
///
/// Note: unlike the standard `Iterator::partition`, this allows distinct
/// collection types for the left and right items. This is more flexible,
/// but may require new type annotations when converting sequential code
/// that used type inferrence assuming the two were the same.
///
/// # Examples
///
/// ```
/// use rayon::prelude::*;
///
/// let (left, right): (Vec<_>, Vec<_>) = (0..8).into_par_iter().partition(|x| x % 2 == 0);
///
/// assert_eq!(left, [0, 2, 4, 6]);
/// assert_eq!(right, [1, 3, 5, 7]);
/// ```
fn partition<A, B, P>(self, predicate: P) -> (A, B)
where
A: Default + Send + ParallelExtend<Self::Item>,
B: Default + Send + ParallelExtend<Self::Item>,
P: Fn(&Self::Item) -> bool + Sync + Send,
{
unzip::partition(self, predicate)
}
/// Partitions and maps the items of a parallel iterator into a pair of
/// arbitrary `ParallelExtend` containers. `Either::Left` items go into
/// the first container, and `Either::Right` items go into the second.
///
/// # Examples
///
/// ```
/// use rayon::prelude::*;
/// use rayon::iter::Either;
///
/// let (left, right): (Vec<_>, Vec<_>) = (0..8).into_par_iter()
/// .partition_map(|x| {
/// if x % 2 == 0 {
/// Either::Left(x * 4)
/// } else {
/// Either::Right(x * 3)
/// }
/// });
///
/// assert_eq!(left, [0, 8, 16, 24]);
/// assert_eq!(right, [3, 9, 15, 21]);
/// ```
///
/// Nested `Either` enums can be split as well.
///
/// ```
/// use rayon::prelude::*;
/// use rayon::iter::Either::*;
///
/// let ((fizzbuzz, fizz), (buzz, other)): ((Vec<_>, Vec<_>), (Vec<_>, Vec<_>)) = (1..20)
/// .into_par_iter()
/// .partition_map(|x| match (x % 3, x % 5) {
/// (0, 0) => Left(Left(x)),
/// (0, _) => Left(Right(x)),
/// (_, 0) => Right(Left(x)),
/// (_, _) => Right(Right(x)),
/// });
///
/// assert_eq!(fizzbuzz, [15]);
/// assert_eq!(fizz, [3, 6, 9, 12, 18]);
/// assert_eq!(buzz, [5, 10]);
/// assert_eq!(other, [1, 2, 4, 7, 8, 11, 13, 14, 16, 17, 19]);
/// ```
fn partition_map<A, B, P, L, R>(self, predicate: P) -> (A, B)
where
A: Default + Send + ParallelExtend<L>,
B: Default + Send + ParallelExtend<R>,
P: Fn(Self::Item) -> Either<L, R> + Sync + Send,
L: Send,
R: Send,
{
unzip::partition_map(self, predicate)
}
/// Intersperses clones of an element between items of this iterator.
///
/// # Examples
///
/// ```
/// use rayon::prelude::*;
///
/// let x = vec![1, 2, 3];
/// let r: Vec<_> = x.into_par_iter().intersperse(-1).collect();
///
/// assert_eq!(r, vec![1, -1, 2, -1, 3]);
/// ```
fn intersperse(self, element: Self::Item) -> Intersperse<Self>
where
Self::Item: Clone,
{
Intersperse::new(self, element)
}
/// Internal method used to define the behavior of this parallel
/// iterator. You should not need to call this directly.
///
/// This method causes the iterator `self` to start producing
/// items and to feed them to the consumer `consumer` one by one.
/// It may split the consumer before doing so to create the
/// opportunity to produce in parallel.
///
/// See the [README] for more details on the internals of parallel
/// iterators.
///
/// [README]: https://github.com/rayon-rs/rayon/blob/master/src/iter/plumbing/README.md
fn drive_unindexed<C>(self, consumer: C) -> C::Result
where
C: UnindexedConsumer<Self::Item>;
/// Internal method used to define the behavior of this parallel
/// iterator. You should not need to call this directly.
///
/// Returns the number of items produced by this iterator, if known
/// statically. This can be used by consumers to trigger special fast
/// paths. Therefore, if `Some(_)` is returned, this iterator must only
/// use the (indexed) `Consumer` methods when driving a consumer, such
/// as `split_at()`. Calling `UnindexedConsumer::split_off_left()` or
/// other `UnindexedConsumer` methods -- or returning an inaccurate
/// value -- may result in panics.
///
/// This method is currently used to optimize `collect` for want
/// of true Rust specialization; it may be removed when
/// specialization is stable.
fn opt_len(&self) -> Option<usize> {
None
}
}
impl<T: ParallelIterator> IntoParallelIterator for T {
type Iter = T;
type Item = T::Item;
fn into_par_iter(self) -> T {
self
}
}
/// An iterator that supports "random access" to its data, meaning
/// that you can split it at arbitrary indices and draw data from
/// those points.
///
/// **Note:** Not implemented for `u64`, `i64`, `u128`, or `i128` ranges
pub trait IndexedParallelIterator: ParallelIterator {
/// Collects the results of the iterator into the specified
/// vector. The vector is always truncated before execution
/// begins. If possible, reusing the vector across calls can lead
/// to better performance since it reuses the same backing buffer.
///
/// # Examples
///
/// ```
/// use rayon::prelude::*;
///
/// // any prior data will be truncated
/// let mut vec = vec![-1, -2, -3];
///
/// (0..5).into_par_iter()
/// .collect_into_vec(&mut vec);
///
/// assert_eq!(vec, [0, 1, 2, 3, 4]);
/// ```
fn collect_into_vec(self, target: &mut Vec<Self::Item>) {
collect::collect_into_vec(self, target);
}
/// Unzips the results of the iterator into the specified
/// vectors. The vectors are always truncated before execution
/// begins. If possible, reusing the vectors across calls can lead
/// to better performance since they reuse the same backing buffer.
///
/// # Examples
///
/// ```
/// use rayon::prelude::*;
///
/// // any prior data will be truncated
/// let mut left = vec![42; 10];
/// let mut right = vec![-1; 10];
///
/// (10..15).into_par_iter()
/// .enumerate()
/// .unzip_into_vecs(&mut left, &mut right);
///
/// assert_eq!(left, [0, 1, 2, 3, 4]);
/// assert_eq!(right, [10, 11, 12, 13, 14]);
/// ```
fn unzip_into_vecs<A, B>(self, left: &mut Vec<A>, right: &mut Vec<B>)
where
Self: IndexedParallelIterator<Item = (A, B)>,
A: Send,
B: Send,
{
collect::unzip_into_vecs(self, left, right);
}
/// Iterates over tuples `(A, B)`, where the items `A` are from
/// this iterator and `B` are from the iterator given as argument.
/// Like the `zip` method on ordinary iterators, if the two
/// iterators are of unequal length, you only get the items they
/// have in common.
///
/// # Examples
///
/// ```
/// use rayon::prelude::*;
///
/// let result: Vec<_> = (1..4)
/// .into_par_iter()
/// .zip(vec!['a', 'b', 'c'])
/// .collect();
///
/// assert_eq!(result, [(1, 'a'), (2, 'b'), (3, 'c')]);
/// ```
fn zip<Z>(self, zip_op: Z) -> Zip<Self, Z::Iter>
where
Z: IntoParallelIterator,
Z::Iter: IndexedParallelIterator,
{
Zip::new(self, zip_op.into_par_iter())
}
/// The same as `Zip`, but requires that both iterators have the same length.
///
/// # Panics
/// Will panic if `self` and `zip_op` are not the same length.
///
/// ```should_panic
/// use rayon::prelude::*;
///
/// let one = [1u8];
/// let two = [2u8, 2];
/// let one_iter = one.par_iter();
/// let two_iter = two.par_iter();
///
/// // this will panic
/// let zipped: Vec<(&u8, &u8)> = one_iter.zip_eq(two_iter).collect();
///
/// // we should never get here
/// assert_eq!(1, zipped.len());
/// ```
fn zip_eq<Z>(self, zip_op: Z) -> ZipEq<Self, Z::Iter>
where
Z: IntoParallelIterator,
Z::Iter: IndexedParallelIterator,
{
let zip_op_iter = zip_op.into_par_iter();
assert_eq!(self.len(), zip_op_iter.len());
ZipEq::new(self, zip_op_iter)
}
/// Interleaves elements of this iterator and the other given
/// iterator. Alternately yields elements from this iterator and
/// the given iterator, until both are exhausted. If one iterator
/// is exhausted before the other, the last elements are provided
/// from the other.
///
/// # Examples
///
/// ```
/// use rayon::prelude::*;
/// let (x, y) = (vec![1, 2], vec![3, 4, 5, 6]);
/// let r: Vec<i32> = x.into_par_iter().interleave(y).collect();
/// assert_eq!(r, vec![1, 3, 2, 4, 5, 6]);
/// ```
fn interleave<I>(self, other: I) -> Interleave<Self, I::Iter>
where
I: IntoParallelIterator<Item = Self::Item>,
I::Iter: IndexedParallelIterator<Item = Self::Item>,
{
Interleave::new(self, other.into_par_iter())
}
/// Interleaves elements of this iterator and the other given
/// iterator, until one is exhausted.
///
/// # Examples
///
/// ```
/// use rayon::prelude::*;
/// let (x, y) = (vec![1, 2, 3, 4], vec![5, 6]);
/// let r: Vec<i32> = x.into_par_iter().interleave_shortest(y).collect();
/// assert_eq!(r, vec![1, 5, 2, 6, 3]);
/// ```
fn interleave_shortest<I>(self, other: I) -> InterleaveShortest<Self, I::Iter>
where
I: IntoParallelIterator<Item = Self::Item>,
I::Iter: IndexedParallelIterator<Item = Self::Item>,
{
InterleaveShortest::new(self, other.into_par_iter())
}
/// Splits an iterator up into fixed-size chunks.
///
/// Returns an iterator that returns `Vec`s of the given number of elements.
/// If the number of elements in the iterator is not divisible by `chunk_size`,
/// the last chunk may be shorter than `chunk_size`.
///
/// See also [`par_chunks()`] and [`par_chunks_mut()`] for similar behavior on
/// slices, without having to allocate intermediate `Vec`s for the chunks.
///
/// [`par_chunks()`]: ../slice/trait.ParallelSlice.html#method.par_chunks
/// [`par_chunks_mut()`]: ../slice/trait.ParallelSliceMut.html#method.par_chunks_mut
///
/// # Examples
///
/// ```
/// use rayon::prelude::*;
/// let a = vec![1, 2, 3, 4, 5, 6, 7, 8, 9, 10];
/// let r: Vec<Vec<i32>> = a.into_par_iter().chunks(3).collect();
/// assert_eq!(r, vec![vec![1,2,3], vec![4,5,6], vec![7,8,9], vec![10]]);
/// ```
fn chunks(self, chunk_size: usize) -> Chunks<Self> {
assert!(chunk_size != 0, "chunk_size must not be zero");
Chunks::new(self, chunk_size)
}
/// Lexicographically compares the elements of this `ParallelIterator` with those of
/// another.
///
/// # Examples
///
/// ```
/// use rayon::prelude::*;
/// use std::cmp::Ordering::*;
///
/// let x = vec![1, 2, 3];
/// assert_eq!(x.par_iter().cmp(&vec![1, 3, 0]), Less);
/// assert_eq!(x.par_iter().cmp(&vec![1, 2, 3]), Equal);
/// assert_eq!(x.par_iter().cmp(&vec![1, 2]), Greater);
/// ```
fn cmp<I>(self, other: I) -> Ordering
where
I: IntoParallelIterator<Item = Self::Item>,
I::Iter: IndexedParallelIterator,
Self::Item: Ord,
{
#[inline]
fn ordering<T: Ord>((x, y): (T, T)) -> Ordering {
Ord::cmp(&x, &y)
}
#[inline]
fn inequal(&ord: &Ordering) -> bool {
ord != Ordering::Equal
}
let other = other.into_par_iter();
let ord_len = self.len().cmp(&other.len());
self.zip(other)
.map(ordering)
.find_first(inequal)
.unwrap_or(ord_len)
}
/// Lexicographically compares the elements of this `ParallelIterator` with those of
/// another.
///
/// # Examples
///
/// ```
/// use rayon::prelude::*;
/// use std::cmp::Ordering::*;
/// use std::f64::NAN;
///
/// let x = vec![1.0, 2.0, 3.0];
/// assert_eq!(x.par_iter().partial_cmp(&vec![1.0, 3.0, 0.0]), Some(Less));
/// assert_eq!(x.par_iter().partial_cmp(&vec![1.0, 2.0, 3.0]), Some(Equal));
/// assert_eq!(x.par_iter().partial_cmp(&vec![1.0, 2.0]), Some(Greater));
/// assert_eq!(x.par_iter().partial_cmp(&vec![1.0, NAN]), None);
/// ```
fn partial_cmp<I>(self, other: I) -> Option<Ordering>
where
I: IntoParallelIterator,
I::Iter: IndexedParallelIterator,
Self::Item: PartialOrd<I::Item>,
{
#[inline]
fn ordering<T: PartialOrd<U>, U>((x, y): (T, U)) -> Option<Ordering> {
PartialOrd::partial_cmp(&x, &y)
}
#[inline]
fn inequal(&ord: &Option<Ordering>) -> bool {
ord != Some(Ordering::Equal)
}
let other = other.into_par_iter();
let ord_len = self.len().cmp(&other.len());
self.zip(other)
.map(ordering)
.find_first(inequal)
.unwrap_or(Some(ord_len))
}
/// Determines if the elements of this `ParallelIterator`
/// are equal to those of another
fn eq<I>(self, other: I) -> bool
where
I: IntoParallelIterator,
I::Iter: IndexedParallelIterator,
Self::Item: PartialEq<I::Item>,
{
#[inline]
fn eq<T: PartialEq<U>, U>((x, y): (T, U)) -> bool {
PartialEq::eq(&x, &y)
}
let other = other.into_par_iter();
self.len() == other.len() && self.zip(other).all(eq)
}
/// Determines if the elements of this `ParallelIterator`
/// are unequal to those of another
fn ne<I>(self, other: I) -> bool
where
I: IntoParallelIterator,
I::Iter: IndexedParallelIterator,
Self::Item: PartialEq<I::Item>,
{
!self.eq(other)
}
/// Determines if the elements of this `ParallelIterator`
/// are lexicographically less than those of another.
fn lt<I>(self, other: I) -> bool
where
I: IntoParallelIterator,
I::Iter: IndexedParallelIterator,
Self::Item: PartialOrd<I::Item>,
{
self.partial_cmp(other) == Some(Ordering::Less)
}
/// Determines if the elements of this `ParallelIterator`
/// are less or equal to those of another.
fn le<I>(self, other: I) -> bool
where
I: IntoParallelIterator,
I::Iter: IndexedParallelIterator,
Self::Item: PartialOrd<I::Item>,
{
let ord = self.partial_cmp(other);
ord == Some(Ordering::Equal) || ord == Some(Ordering::Less)
}
/// Determines if the elements of this `ParallelIterator`
/// are lexicographically greater than those of another.
fn gt<I>(self, other: I) -> bool
where
I: IntoParallelIterator,
I::Iter: IndexedParallelIterator,
Self::Item: PartialOrd<I::Item>,
{
self.partial_cmp(other) == Some(Ordering::Greater)
}
/// Determines if the elements of this `ParallelIterator`
/// are less or equal to those of another.
fn ge<I>(self, other: I) -> bool
where
I: IntoParallelIterator,
I::Iter: IndexedParallelIterator,
Self::Item: PartialOrd<I::Item>,
{
let ord = self.partial_cmp(other);
ord == Some(Ordering::Equal) || ord == Some(Ordering::Greater)
}
/// Yields an index along with each item.
///
/// # Examples
///
/// ```
/// use rayon::prelude::*;
///
/// let chars = vec!['a', 'b', 'c'];
/// let result: Vec<_> = chars
/// .into_par_iter()
/// .enumerate()
/// .collect();
///
/// assert_eq!(result, [(0, 'a'), (1, 'b'), (2, 'c')]);
/// ```
fn enumerate(self) -> Enumerate<Self> {
Enumerate::new(self)
}
/// Creates an iterator that steps by the given amount
///
/// # Examples
///
/// ```
///use rayon::prelude::*;
///
/// let range = (3..10);
/// let result: Vec<i32> = range
/// .into_par_iter()
/// .step_by(3)
/// .collect();
///
/// assert_eq!(result, [3, 6, 9])
/// ```
///
/// # Compatibility
///
/// This method is only available on Rust 1.38 or greater.
#[cfg(step_by)]
fn step_by(self, step: usize) -> StepBy<Self> {
StepBy::new(self, step)
}
/// Creates an iterator that skips the first `n` elements.
///
/// # Examples
///
/// ```
/// use rayon::prelude::*;
///
/// let result: Vec<_> = (0..100)
/// .into_par_iter()
/// .skip(95)
/// .collect();
///
/// assert_eq!(result, [95, 96, 97, 98, 99]);
/// ```
fn skip(self, n: usize) -> Skip<Self> {
Skip::new(self, n)
}
/// Creates an iterator that yields the first `n` elements.
///
/// # Examples
///
/// ```
/// use rayon::prelude::*;
///
/// let result: Vec<_> = (0..100)
/// .into_par_iter()
/// .take(5)
/// .collect();
///
/// assert_eq!(result, [0, 1, 2, 3, 4]);
/// ```
fn take(self, n: usize) -> Take<Self> {
Take::new(self, n)
}
/// Searches for **some** item in the parallel iterator that
/// matches the given predicate, and returns its index. Like
/// `ParallelIterator::find_any`, the parallel search will not
/// necessarily find the **first** match, and once a match is
/// found we'll attempt to stop processing any more.
///
/// # Examples
///
/// ```
/// use rayon::prelude::*;
///
/// let a = [1, 2, 3, 3];
///
/// let i = a.par_iter().position_any(|&x| x == 3).expect("found");
/// assert!(i == 2 || i == 3);
///
/// assert_eq!(a.par_iter().position_any(|&x| x == 100), None);
/// ```
fn position_any<P>(self, predicate: P) -> Option<usize>
where
P: Fn(Self::Item) -> bool + Sync + Send,
{
#[inline]
fn check(&(_, p): &(usize, bool)) -> bool {
p
}
let (i, _) = self.map(predicate).enumerate().find_any(check)?;
Some(i)
}
/// Searches for the sequentially **first** item in the parallel iterator
/// that matches the given predicate, and returns its index.
///
/// Like `ParallelIterator::find_first`, once a match is found,
/// all attempts to the right of the match will be stopped, while
/// attempts to the left must continue in case an earlier match
/// is found.
///
/// Note that not all parallel iterators have a useful order, much like
/// sequential `HashMap` iteration, so "first" may be nebulous. If you
/// just want the first match that discovered anywhere in the iterator,
/// `position_any` is a better choice.
///
/// # Examples
///
/// ```
/// use rayon::prelude::*;
///
/// let a = [1, 2, 3, 3];
///
/// assert_eq!(a.par_iter().position_first(|&x| x == 3), Some(2));
///
/// assert_eq!(a.par_iter().position_first(|&x| x == 100), None);
/// ```
fn position_first<P>(self, predicate: P) -> Option<usize>
where
P: Fn(Self::Item) -> bool + Sync + Send,
{
#[inline]
fn check(&(_, p): &(usize, bool)) -> bool {
p
}
let (i, _) = self.map(predicate).enumerate().find_first(check)?;
Some(i)
}
/// Searches for the sequentially **last** item in the parallel iterator
/// that matches the given predicate, and returns its index.
///
/// Like `ParallelIterator::find_last`, once a match is found,
/// all attempts to the left of the match will be stopped, while
/// attempts to the right must continue in case a later match
/// is found.
///
/// Note that not all parallel iterators have a useful order, much like
/// sequential `HashMap` iteration, so "last" may be nebulous. When the
/// order doesn't actually matter to you, `position_any` is a better
/// choice.
///
/// # Examples
///
/// ```
/// use rayon::prelude::*;
///
/// let a = [1, 2, 3, 3];
///
/// assert_eq!(a.par_iter().position_last(|&x| x == 3), Some(3));
///
/// assert_eq!(a.par_iter().position_last(|&x| x == 100), None);
/// ```
fn position_last<P>(self, predicate: P) -> Option<usize>
where
P: Fn(Self::Item) -> bool + Sync + Send,
{
#[inline]
fn check(&(_, p): &(usize, bool)) -> bool {
p
}
let (i, _) = self.map(predicate).enumerate().find_last(check)?;
Some(i)
}
#[doc(hidden)]
#[deprecated(
note = "parallel `position` does not search in order -- use `position_any`, \\
`position_first`, or `position_last`"
)]
fn position<P>(self, predicate: P) -> Option<usize>
where
P: Fn(Self::Item) -> bool + Sync + Send,
{
self.position_any(predicate)
}
/// Searches for items in the parallel iterator that match the given
/// predicate, and returns their indices.
///
/// # Examples
///
/// ```
/// use rayon::prelude::*;
///
/// let primes = vec![2, 3, 5, 7, 11, 13, 17, 19, 23, 29];
///
/// // Find the positions of primes congruent to 1 modulo 6
/// let p1mod6: Vec<_> = primes.par_iter().positions(|&p| p % 6 == 1).collect();
/// assert_eq!(p1mod6, [3, 5, 7]); // primes 7, 13, and 19
///
/// // Find the positions of primes congruent to 5 modulo 6
/// let p5mod6: Vec<_> = primes.par_iter().positions(|&p| p % 6 == 5).collect();
/// assert_eq!(p5mod6, [2, 4, 6, 8, 9]); // primes 5, 11, 17, 23, and 29
/// ```
fn positions<P>(self, predicate: P) -> Positions<Self, P>
where
P: Fn(Self::Item) -> bool + Sync + Send,
{
Positions::new(self, predicate)
}
/// Produces a new iterator with the elements of this iterator in
/// reverse order.
///
/// # Examples
///
/// ```
/// use rayon::prelude::*;
///
/// let result: Vec<_> = (0..5)
/// .into_par_iter()
/// .rev()
/// .collect();
///
/// assert_eq!(result, [4, 3, 2, 1, 0]);
/// ```
fn rev(self) -> Rev<Self> {
Rev::new(self)
}
/// Sets the minimum length of iterators desired to process in each
/// thread. Rayon will not split any smaller than this length, but
/// of course an iterator could already be smaller to begin with.
///
/// Producers like `zip` and `interleave` will use greater of the two
/// minimums.
/// Chained iterators and iterators inside `flat_map` may each use
/// their own minimum length.
///
/// # Examples
///
/// ```
/// use rayon::prelude::*;
///
/// let min = (0..1_000_000)
/// .into_par_iter()
/// .with_min_len(1234)
/// .fold(|| 0, |acc, _| acc + 1) // count how many are in this segment
/// .min().unwrap();
///
/// assert!(min >= 1234);
/// ```
fn with_min_len(self, min: usize) -> MinLen<Self> {
MinLen::new(self, min)
}
/// Sets the maximum length of iterators desired to process in each
/// thread. Rayon will try to split at least below this length,
/// unless that would put it below the length from `with_min_len()`.
/// For example, given min=10 and max=15, a length of 16 will not be
/// split any further.
///
/// Producers like `zip` and `interleave` will use lesser of the two
/// maximums.
/// Chained iterators and iterators inside `flat_map` may each use
/// their own maximum length.
///
/// # Examples
///
/// ```
/// use rayon::prelude::*;
///
/// let max = (0..1_000_000)
/// .into_par_iter()
/// .with_max_len(1234)
/// .fold(|| 0, |acc, _| acc + 1) // count how many are in this segment
/// .max().unwrap();
///
/// assert!(max <= 1234);
/// ```
fn with_max_len(self, max: usize) -> MaxLen<Self> {
MaxLen::new(self, max)
}
/// Produces an exact count of how many items this iterator will
/// produce, presuming no panic occurs.
///
/// # Examples
///
/// ```
/// use rayon::prelude::*;
///
/// let par_iter = (0..100).into_par_iter().zip(vec![0; 10]);
/// assert_eq!(par_iter.len(), 10);
///
/// let vec: Vec<_> = par_iter.collect();
/// assert_eq!(vec.len(), 10);
/// ```
fn len(&self) -> usize;
/// Internal method used to define the behavior of this parallel
/// iterator. You should not need to call this directly.
///
/// This method causes the iterator `self` to start producing
/// items and to feed them to the consumer `consumer` one by one.
/// It may split the consumer before doing so to create the
/// opportunity to produce in parallel. If a split does happen, it
/// will inform the consumer of the index where the split should
/// occur (unlike `ParallelIterator::drive_unindexed()`).
///
/// See the [README] for more details on the internals of parallel
/// iterators.
///
/// [README]: https://github.com/rayon-rs/rayon/blob/master/src/iter/plumbing/README.md
fn drive<C: Consumer<Self::Item>>(self, consumer: C) -> C::Result;
/// Internal method used to define the behavior of this parallel
/// iterator. You should not need to call this directly.
///
/// This method converts the iterator into a producer P and then
/// invokes `callback.callback()` with P. Note that the type of
/// this producer is not defined as part of the API, since
/// `callback` must be defined generically for all producers. This
/// allows the producer type to contain references; it also means
/// that parallel iterators can adjust that type without causing a
/// breaking change.
///
/// See the [README] for more details on the internals of parallel
/// iterators.
///
/// [README]: https://github.com/rayon-rs/rayon/blob/master/src/iter/plumbing/README.md
fn with_producer<CB: ProducerCallback<Self::Item>>(self, callback: CB) -> CB::Output;
}
/// `FromParallelIterator` implements the creation of a collection
/// from a [`ParallelIterator`]. By implementing
/// `FromParallelIterator` for a given type, you define how it will be
/// created from an iterator.
///
/// `FromParallelIterator` is used through [`ParallelIterator`]'s [`collect()`] method.
///
/// [`ParallelIterator`]: trait.ParallelIterator.html
/// [`collect()`]: trait.ParallelIterator.html#method.collect
///
/// # Examples
///
/// Implementing `FromParallelIterator` for your type:
///
/// ```
/// use rayon::prelude::*;
/// use std::mem;
///
/// struct BlackHole {
/// mass: usize,
/// }
///
/// impl<T: Send> FromParallelIterator<T> for BlackHole {
/// fn from_par_iter<I>(par_iter: I) -> Self
/// where I: IntoParallelIterator<Item = T>
/// {
/// let par_iter = par_iter.into_par_iter();
/// BlackHole {
/// mass: par_iter.count() * mem::size_of::<T>(),
/// }
/// }
/// }
///
/// let bh: BlackHole = (0i32..1000).into_par_iter().collect();
/// assert_eq!(bh.mass, 4000);
/// ```
pub trait FromParallelIterator<T>
where
T: Send,
{
/// Creates an instance of the collection from the parallel iterator `par_iter`.
///
/// If your collection is not naturally parallel, the easiest (and
/// fastest) way to do this is often to collect `par_iter` into a
/// [`LinkedList`] or other intermediate data structure and then
/// sequentially extend your collection. However, a more 'native'
/// technique is to use the [`par_iter.fold`] or
/// [`par_iter.fold_with`] methods to create the collection.
/// Alternatively, if your collection is 'natively' parallel, you
/// can use `par_iter.for_each` to process each element in turn.
///
/// [`LinkedList`]: https://doc.rust-lang.org/std/collections/struct.LinkedList.html
/// [`par_iter.fold`]: trait.ParallelIterator.html#method.fold
/// [`par_iter.fold_with`]: trait.ParallelIterator.html#method.fold_with
/// [`par_iter.for_each`]: trait.ParallelIterator.html#method.for_each
fn from_par_iter<I>(par_iter: I) -> Self
where
I: IntoParallelIterator<Item = T>;
}
/// `ParallelExtend` extends an existing collection with items from a [`ParallelIterator`].
///
/// [`ParallelIterator`]: trait.ParallelIterator.html
///
/// # Examples
///
/// Implementing `ParallelExtend` for your type:
///
/// ```
/// use rayon::prelude::*;
/// use std::mem;
///
/// struct BlackHole {
/// mass: usize,
/// }
///
/// impl<T: Send> ParallelExtend<T> for BlackHole {
/// fn par_extend<I>(&mut self, par_iter: I)
/// where I: IntoParallelIterator<Item = T>
/// {
/// let par_iter = par_iter.into_par_iter();
/// self.mass += par_iter.count() * mem::size_of::<T>();
/// }
/// }
///
/// let mut bh = BlackHole { mass: 0 };
/// bh.par_extend(0i32..1000);
/// assert_eq!(bh.mass, 4000);
/// bh.par_extend(0i64..10);
/// assert_eq!(bh.mass, 4080);
/// ```
pub trait ParallelExtend<T>
where
T: Send,
{
/// Extends an instance of the collection with the elements drawn
/// from the parallel iterator `par_iter`.
///
/// # Examples
///
/// ```
/// use rayon::prelude::*;
///
/// let mut vec = vec![];
/// vec.par_extend(0..5);
/// vec.par_extend((0..5).into_par_iter().map(|i| i * i));
/// assert_eq!(vec, [0, 1, 2, 3, 4, 0, 1, 4, 9, 16]);
/// ```
fn par_extend<I>(&mut self, par_iter: I)
where
I: IntoParallelIterator<Item = T>;
}
/// `ParallelDrainFull` creates a parallel iterator that moves all items
/// from a collection while retaining the original capacity.
///
/// Types which are indexable typically implement [`ParallelDrainRange`]
/// instead, where you can drain fully with `par_drain(..)`.
///
/// [`ParallelDrainRange`]: trait.ParallelDrainRange.html
pub trait ParallelDrainFull {
/// The draining parallel iterator type that will be created.
type Iter: ParallelIterator<Item = Self::Item>;
/// The type of item that the parallel iterator will produce.
/// This is usually the same as `IntoParallelIterator::Item`.
type Item: Send;
/// Returns a draining parallel iterator over an entire collection.
///
/// When the iterator is dropped, all items are removed, even if the
/// iterator was not fully consumed. If the iterator is leaked, for example
/// using `std::mem::forget`, it is unspecified how many items are removed.
///
/// # Examples
///
/// ```
/// use rayon::prelude::*;
/// use std::collections::{BinaryHeap, HashSet};
///
/// let squares: HashSet<i32> = (0..10).map(|x| x * x).collect();
///
/// let mut heap: BinaryHeap<_> = squares.iter().copied().collect();
/// assert_eq!(
/// // heaps are drained in arbitrary order
/// heap.par_drain()
/// .inspect(|x| assert!(squares.contains(x)))
/// .count(),
/// squares.len(),
/// );
/// assert!(heap.is_empty());
/// assert!(heap.capacity() >= squares.len());
/// ```
fn par_drain(self) -> Self::Iter;
}
/// `ParallelDrainRange` creates a parallel iterator that moves a range of items
/// from a collection while retaining the original capacity.
///
/// Types which are not indexable may implement [`ParallelDrainFull`] instead.
///
/// [`ParallelDrainFull`]: trait.ParallelDrainFull.html
pub trait ParallelDrainRange<Idx = usize> {
/// The draining parallel iterator type that will be created.
type Iter: ParallelIterator<Item = Self::Item>;
/// The type of item that the parallel iterator will produce.
/// This is usually the same as `IntoParallelIterator::Item`.
type Item: Send;
/// Returns a draining parallel iterator over a range of the collection.
///
/// When the iterator is dropped, all items in the range are removed, even
/// if the iterator was not fully consumed. If the iterator is leaked, for
/// example using `std::mem::forget`, it is unspecified how many items are
/// removed.
///
/// # Examples
///
/// ```
/// use rayon::prelude::*;
///
/// let squares: Vec<i32> = (0..10).map(|x| x * x).collect();
///
/// println!("RangeFull");
/// let mut vec = squares.clone();
/// assert!(vec.par_drain(..)
/// .eq(squares.par_iter().copied()));
/// assert!(vec.is_empty());
/// assert!(vec.capacity() >= squares.len());
///
/// println!("RangeFrom");
/// let mut vec = squares.clone();
/// assert!(vec.par_drain(5..)
/// .eq(squares[5..].par_iter().copied()));
/// assert_eq!(&vec[..], &squares[..5]);
/// assert!(vec.capacity() >= squares.len());
///
/// println!("RangeTo");
/// let mut vec = squares.clone();
/// assert!(vec.par_drain(..5)
/// .eq(squares[..5].par_iter().copied()));
/// assert_eq!(&vec[..], &squares[5..]);
/// assert!(vec.capacity() >= squares.len());
///
/// println!("RangeToInclusive");
/// let mut vec = squares.clone();
/// assert!(vec.par_drain(..=5)
/// .eq(squares[..=5].par_iter().copied()));
/// assert_eq!(&vec[..], &squares[6..]);
/// assert!(vec.capacity() >= squares.len());
///
/// println!("Range");
/// let mut vec = squares.clone();
/// assert!(vec.par_drain(3..7)
/// .eq(squares[3..7].par_iter().copied()));
/// assert_eq!(&vec[..3], &squares[..3]);
/// assert_eq!(&vec[3..], &squares[7..]);
/// assert!(vec.capacity() >= squares.len());
///
/// println!("RangeInclusive");
/// let mut vec = squares.clone();
/// assert!(vec.par_drain(3..=7)
/// .eq(squares[3..=7].par_iter().copied()));
/// assert_eq!(&vec[..3], &squares[..3]);
/// assert_eq!(&vec[3..], &squares[8..]);
/// assert!(vec.capacity() >= squares.len());
/// ```
fn par_drain<R: RangeBounds<Idx>>(self, range: R) -> Self::Iter;
}
/// We hide the `Try` trait in a private module, as it's only meant to be a
/// stable clone of the standard library's `Try` trait, as yet unstable.
mod private {
/// Clone of `std::ops::Try`.
///
/// Implementing this trait is not permitted outside of `rayon`.
pub trait Try {
private_decl! {}
type Ok;
type Error;
fn into_result(self) -> Result<Self::Ok, Self::Error>;
fn from_ok(v: Self::Ok) -> Self;
fn from_error(v: Self::Error) -> Self;
}
impl<T> Try for Option<T> {
private_impl! {}
type Ok = T;
type Error = ();
fn into_result(self) -> Result<T, ()> {
self.ok_or(())
}
fn from_ok(v: T) -> Self {
Some(v)
}
fn from_error(_: ()) -> Self {
None
}
}
impl<T, E> Try for Result<T, E> {
private_impl! {}
type Ok = T;
type Error = E;
fn into_result(self) -> Result<T, E> {
self
}
fn from_ok(v: T) -> Self {
Ok(v)
}
fn from_error(v: E) -> Self {
Err(v)
}
}
}