1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272
// Copyright 2015 Brian Smith.
//
// Permission to use, copy, modify, and/or distribute this software for any
// purpose with or without fee is hereby granted, provided that the above
// copyright notice and this permission notice appear in all copies.
//
// THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHORS DISCLAIM ALL WARRANTIES
// WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
// MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY
// SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
// WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
// OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
// CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
//! PBKDF2 derivation and verification.
//!
//! Use `derive` to derive PBKDF2 outputs. Use `verify` to verify secret
//! against previously-derived outputs.
//!
//! PBKDF2 is specified in [RFC 2898 Section 5.2] with test vectors given in
//! [RFC 6070]. See also [NIST Special Publication 800-132].
//!
//! [RFC 2898 Section 5.2]: https://tools.ietf.org/html/rfc2898#section-5.2
//! [RFC 6070]: https://tools.ietf.org/html/rfc6070
//! [NIST Special Publication 800-132]:
//! http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-132.pdf
//!
//! # Examples
//!
//! ## Password Database Example
//!
//! ```
//! use ring::{digest, pbkdf2};
//! use std::{collections::HashMap, num::NonZeroU32};
//!
//! static PBKDF2_ALG: pbkdf2::Algorithm = pbkdf2::PBKDF2_HMAC_SHA256;
//! const CREDENTIAL_LEN: usize = digest::SHA256_OUTPUT_LEN;
//! pub type Credential = [u8; CREDENTIAL_LEN];
//!
//! enum Error {
//! WrongUsernameOrPassword
//! }
//!
//! struct PasswordDatabase {
//! pbkdf2_iterations: NonZeroU32,
//! db_salt_component: [u8; 16],
//!
//! // Normally this would be a persistent database.
//! storage: HashMap<String, Credential>,
//! }
//!
//! impl PasswordDatabase {
//! pub fn store_password(&mut self, username: &str, password: &str) {
//! let salt = self.salt(username);
//! let mut to_store: Credential = [0u8; CREDENTIAL_LEN];
//! pbkdf2::derive(PBKDF2_ALG, self.pbkdf2_iterations, &salt,
//! password.as_bytes(), &mut to_store);
//! self.storage.insert(String::from(username), to_store);
//! }
//!
//! pub fn verify_password(&self, username: &str, attempted_password: &str)
//! -> Result<(), Error> {
//! match self.storage.get(username) {
//! Some(actual_password) => {
//! let salt = self.salt(username);
//! pbkdf2::verify(PBKDF2_ALG, self.pbkdf2_iterations, &salt,
//! attempted_password.as_bytes(),
//! actual_password)
//! .map_err(|_| Error::WrongUsernameOrPassword)
//! },
//!
//! None => Err(Error::WrongUsernameOrPassword)
//! }
//! }
//!
//! // The salt should have a user-specific component so that an attacker
//! // cannot crack one password for multiple users in the database. It
//! // should have a database-unique component so that an attacker cannot
//! // crack the same user's password across databases in the unfortunate
//! // but common case that the user has used the same password for
//! // multiple systems.
//! fn salt(&self, username: &str) -> Vec<u8> {
//! let mut salt = Vec::with_capacity(self.db_salt_component.len() +
//! username.as_bytes().len());
//! salt.extend(self.db_salt_component.as_ref());
//! salt.extend(username.as_bytes());
//! salt
//! }
//! }
//!
//! fn main() {
//! // Normally these parameters would be loaded from a configuration file.
//! let mut db = PasswordDatabase {
//! pbkdf2_iterations: NonZeroU32::new(100_000).unwrap(),
//! db_salt_component: [
//! // This value was generated from a secure PRNG.
//! 0xd6, 0x26, 0x98, 0xda, 0xf4, 0xdc, 0x50, 0x52,
//! 0x24, 0xf2, 0x27, 0xd1, 0xfe, 0x39, 0x01, 0x8a
//! ],
//! storage: HashMap::new(),
//! };
//!
//! db.store_password("alice", "@74d7]404j|W}6u");
//!
//! // An attempt to log in with the wrong password fails.
//! assert!(db.verify_password("alice", "wrong password").is_err());
//!
//! // Normally there should be an expoentially-increasing delay between
//! // attempts to further protect against online attacks.
//!
//! // An attempt to log in with the right password succeeds.
//! assert!(db.verify_password("alice", "@74d7]404j|W}6u").is_ok());
//! }
use crate::{constant_time, digest, error, hmac, polyfill};
use core::num::NonZeroU32;
/// A PBKDF2 algorithm.
#[derive(Clone, Copy, PartialEq, Eq)]
pub struct Algorithm(hmac::Algorithm);
/// PBKDF2 using HMAC-SHA1.
pub static PBKDF2_HMAC_SHA1: Algorithm = Algorithm(hmac::HMAC_SHA1_FOR_LEGACY_USE_ONLY);
/// PBKDF2 using HMAC-SHA256.
pub static PBKDF2_HMAC_SHA256: Algorithm = Algorithm(hmac::HMAC_SHA256);
/// PBKDF2 using HMAC-SHA384.
pub static PBKDF2_HMAC_SHA384: Algorithm = Algorithm(hmac::HMAC_SHA384);
/// PBKDF2 using HMAC-SHA512.
pub static PBKDF2_HMAC_SHA512: Algorithm = Algorithm(hmac::HMAC_SHA512);
/// Fills `out` with the key derived using PBKDF2 with the given inputs.
///
/// Do not use `derive` as part of verifying a secret; use `verify` instead, to
/// minimize the effectiveness of timing attacks.
///
/// `out.len()` must be no larger than the digest length * (2**32 - 1), per the
/// PBKDF2 specification.
///
/// | Parameter | RFC 2898 Section 5.2 Term
/// |-------------|-------------------------------------------
/// | digest_alg | PRF (HMAC with the given digest algorithm)
/// | iterations | c (iteration count)
/// | salt | S (salt)
/// | secret | P (password)
/// | out | dk (derived key)
/// | out.len() | dkLen (derived key length)
///
/// # Panics
///
/// `derive` panics if `out.len()` is larger than (2**32 - 1) * the digest
/// algorithm's output length, per the PBKDF2 specification.
pub fn derive(
algorithm: Algorithm,
iterations: NonZeroU32,
salt: &[u8],
secret: &[u8],
out: &mut [u8],
) {
let digest_alg = algorithm.0.digest_algorithm();
let output_len = digest_alg.output_len;
// This implementation's performance is asymptotically optimal as described
// in https://jbp.io/2015/08/11/pbkdf2-performance-matters/. However, it
// hasn't been optimized to the same extent as fastpbkdf2. In particular,
// this implementation is probably doing a lot of unnecessary copying.
let secret = hmac::Key::new(algorithm.0, secret);
// Clear |out|.
polyfill::slice::fill(out, 0);
let mut idx: u32 = 0;
for chunk in out.chunks_mut(output_len) {
idx = idx.checked_add(1).expect("derived key too long");
derive_block(&secret, iterations, salt, idx, chunk);
}
}
fn derive_block(secret: &hmac::Key, iterations: NonZeroU32, salt: &[u8], idx: u32, out: &mut [u8]) {
let mut ctx = hmac::Context::with_key(secret);
ctx.update(salt);
ctx.update(&u32::to_be_bytes(idx));
let mut u = ctx.sign();
let mut remaining: u32 = iterations.into();
loop {
for i in 0..out.len() {
out[i] ^= u.as_ref()[i];
}
if remaining == 1 {
break;
}
remaining -= 1;
u = hmac::sign(secret, u.as_ref());
}
}
/// Verifies that a previously-derived (e.g., using `derive`) PBKDF2 value
/// matches the PBKDF2 value derived from the other inputs.
///
/// The comparison is done in constant time to prevent timing attacks. The
/// comparison will fail if `previously_derived` is empty (has a length of
/// zero).
///
/// | Parameter | RFC 2898 Section 5.2 Term
/// |----------------------------|--------------------------------------------
/// | digest_alg | PRF (HMAC with the given digest algorithm).
/// | `iterations` | c (iteration count)
/// | `salt` | S (salt)
/// | `secret` | P (password)
/// | `previously_derived` | dk (derived key)
/// | `previously_derived.len()` | dkLen (derived key length)
///
/// # Panics
///
/// `verify` panics if `out.len()` is larger than (2**32 - 1) * the digest
/// algorithm's output length, per the PBKDF2 specification.
pub fn verify(
algorithm: Algorithm,
iterations: NonZeroU32,
salt: &[u8],
secret: &[u8],
previously_derived: &[u8],
) -> Result<(), error::Unspecified> {
let digest_alg = algorithm.0.digest_algorithm();
if previously_derived.is_empty() {
return Err(error::Unspecified);
}
let mut derived_buf = [0u8; digest::MAX_OUTPUT_LEN];
let output_len = digest_alg.output_len;
let secret = hmac::Key::new(algorithm.0, secret);
let mut idx: u32 = 0;
let mut matches = 1;
for previously_derived_chunk in previously_derived.chunks(output_len) {
idx = idx.checked_add(1).expect("derived key too long");
let derived_chunk = &mut derived_buf[..previously_derived_chunk.len()];
polyfill::slice::fill(derived_chunk, 0);
derive_block(&secret, iterations, salt, idx, derived_chunk);
// XXX: This isn't fully constant-time-safe. TODO: Fix that.
let current_block_matches =
if constant_time::verify_slices_are_equal(derived_chunk, previously_derived_chunk)
.is_ok()
{
1
} else {
0
};
matches &= current_block_matches;
}
if matches == 0 {
return Err(error::Unspecified);
}
Ok(())
}