1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
use crate::rand;
use crate::server::ProducesTickets;
use crate::Error;

use ring::aead;
use std::mem;
use std::sync::{Arc, Mutex, MutexGuard};
use std::time;

/// The timebase for expiring and rolling tickets and ticketing
/// keys.  This is UNIX wall time in seconds.
///
/// This is guaranteed to be on or after the UNIX epoch.
#[derive(Clone, Copy, Debug)]
pub struct TimeBase(time::Duration);

impl TimeBase {
    #[inline]
    pub fn now() -> Result<Self, time::SystemTimeError> {
        Ok(Self(
            time::SystemTime::now().duration_since(time::UNIX_EPOCH)?,
        ))
    }

    #[inline]
    pub fn as_secs(&self) -> u64 {
        self.0.as_secs()
    }
}

/// This is a `ProducesTickets` implementation which uses
/// any *ring* `aead::Algorithm` to encrypt and authentication
/// the ticket payload.  It does not enforce any lifetime
/// constraint.
struct AeadTicketer {
    alg: &'static aead::Algorithm,
    key: aead::LessSafeKey,
    lifetime: u32,
}

impl AeadTicketer {
    /// Make a ticketer with recommended configuration and a random key.
    fn new() -> Result<Self, rand::GetRandomFailed> {
        let mut key = [0u8; 32];
        rand::fill_random(&mut key)?;

        let alg = &aead::CHACHA20_POLY1305;
        let key = aead::UnboundKey::new(alg, &key).unwrap();

        Ok(Self {
            alg,
            key: aead::LessSafeKey::new(key),
            lifetime: 60 * 60 * 12,
        })
    }
}

impl ProducesTickets for AeadTicketer {
    fn enabled(&self) -> bool {
        true
    }
    fn lifetime(&self) -> u32 {
        self.lifetime
    }

    /// Encrypt `message` and return the ciphertext.
    fn encrypt(&self, message: &[u8]) -> Option<Vec<u8>> {
        // Random nonce, because a counter is a privacy leak.
        let mut nonce_buf = [0u8; 12];
        rand::fill_random(&mut nonce_buf).ok()?;
        let nonce = ring::aead::Nonce::assume_unique_for_key(nonce_buf);
        let aad = ring::aead::Aad::empty();

        let mut ciphertext =
            Vec::with_capacity(nonce_buf.len() + message.len() + self.key.algorithm().tag_len());
        ciphertext.extend(&nonce_buf);
        ciphertext.extend(message);
        self.key
            .seal_in_place_separate_tag(nonce, aad, &mut ciphertext[nonce_buf.len()..])
            .map(|tag| {
                ciphertext.extend(tag.as_ref());
                ciphertext
            })
            .ok()
    }

    /// Decrypt `ciphertext` and recover the original message.
    fn decrypt(&self, ciphertext: &[u8]) -> Option<Vec<u8>> {
        // Non-panicking `let (nonce, ciphertext) = ciphertext.split_at(...)`.
        let nonce = ciphertext.get(..self.alg.nonce_len())?;
        let ciphertext = ciphertext.get(nonce.len()..)?;

        // This won't fail since `nonce` has the required length.
        let nonce = ring::aead::Nonce::try_assume_unique_for_key(nonce).ok()?;

        let mut out = Vec::from(ciphertext);

        let plain_len = self
            .key
            .open_in_place(nonce, aead::Aad::empty(), &mut out)
            .ok()?
            .len();
        out.truncate(plain_len);

        Some(out)
    }
}

struct TicketSwitcherState {
    next: Option<Box<dyn ProducesTickets>>,
    current: Box<dyn ProducesTickets>,
    previous: Option<Box<dyn ProducesTickets>>,
    next_switch_time: u64,
}

/// A ticketer that has a 'current' sub-ticketer and a single
/// 'previous' ticketer.  It creates a new ticketer every so
/// often, demoting the current ticketer.
struct TicketSwitcher {
    generator: fn() -> Result<Box<dyn ProducesTickets>, rand::GetRandomFailed>,
    lifetime: u32,
    state: Mutex<TicketSwitcherState>,
}

impl TicketSwitcher {
    /// `lifetime` is in seconds, and is how long the current ticketer
    /// is used to generate new tickets.  Tickets are accepted for no
    /// longer than twice this duration.  `generator` produces a new
    /// `ProducesTickets` implementation.
    fn new(
        lifetime: u32,
        generator: fn() -> Result<Box<dyn ProducesTickets>, rand::GetRandomFailed>,
    ) -> Result<Self, Error> {
        let now = TimeBase::now()?;
        Ok(Self {
            generator,
            lifetime,
            state: Mutex::new(TicketSwitcherState {
                next: Some(generator()?),
                current: generator()?,
                previous: None,
                next_switch_time: now.as_secs() + u64::from(lifetime),
            }),
        })
    }

    /// If it's time, demote the `current` ticketer to `previous` (so it
    /// does no new encryptions but can do decryption) and use next for a
    /// new `current` ticketer.
    ///
    /// Calling this regularly will ensure timely key erasure.  Otherwise,
    /// key erasure will be delayed until the next encrypt/decrypt call.
    ///
    /// For efficiency, this is also responsible for locking the state mutex
    /// and returning the mutexguard.
    fn maybe_roll(&self, now: TimeBase) -> Option<MutexGuard<TicketSwitcherState>> {
        // The code below aims to make switching as efficient as possible
        // in the common case that the generator never fails. To achieve this
        // we run the following steps:
        //  1. If no switch is necessary, just return the mutexguard
        //  2. Shift over all of the ticketers (so current becomes previous,
        //     and next becomes current). After this, other threads can
        //     start using the new current ticketer.
        //  3. unlock mutex and generate new ticketer.
        //  4. Place new ticketer in next and return current
        //
        // There are a few things to note here. First, we don't check whether
        // a new switch might be needed in step 4, even though, due to locking
        // and entropy collection, significant amounts of time may have passed.
        // This is to guarantee that the thread doing the switch will eventually
        // make progress.
        //
        // Second, because next may be None, step 2 can fail. In that case
        // we enter a recovery mode where we generate 2 new ticketers, one for
        // next and one for the current ticketer. We then take the mutex a
        // second time and redo the time check to see if a switch is still
        // necessary.
        //
        // This somewhat convoluted approach ensures good availability of the
        // mutex, by ensuring that the state is usable and the mutex not held
        // during generation. It also ensures that, so long as the inner
        // ticketer never generates panics during encryption/decryption,
        // we are guaranteed to never panic when holding the mutex.

        let now = now.as_secs();
        let mut are_recovering = false; // Are we recovering from previous failure?
        {
            // Scope the mutex so we only take it for as long as needed
            let mut state = self.state.lock().ok()?;

            // Fast path in case we do not need to switch to the next ticketer yet
            if now <= state.next_switch_time {
                return Some(state);
            }

            // Make the switch, or mark for recovery if not possible
            if let Some(next) = state.next.take() {
                state.previous = Some(mem::replace(&mut state.current, next));
                state.next_switch_time = now + u64::from(self.lifetime);
            } else {
                are_recovering = true;
            }
        }

        // We always need a next, so generate it now
        let next = (self.generator)().ok()?;
        if !are_recovering {
            // Normal path, generate new next and place it in the state
            let mut state = self.state.lock().ok()?;
            state.next = Some(next);
            Some(state)
        } else {
            // Recovering, generate also a new current ticketer, and modify state
            // as needed. (we need to redo the time check, otherwise this might
            // result in very rapid switching of ticketers)
            let new_current = (self.generator)().ok()?;
            let mut state = self.state.lock().ok()?;
            state.next = Some(next);
            if now > state.next_switch_time {
                state.previous = Some(mem::replace(&mut state.current, new_current));
                state.next_switch_time = now + u64::from(self.lifetime);
            }
            Some(state)
        }
    }
}

impl ProducesTickets for TicketSwitcher {
    fn lifetime(&self) -> u32 {
        self.lifetime * 2
    }

    fn enabled(&self) -> bool {
        true
    }

    fn encrypt(&self, message: &[u8]) -> Option<Vec<u8>> {
        let state = self.maybe_roll(TimeBase::now().ok()?)?;

        state.current.encrypt(message)
    }

    fn decrypt(&self, ciphertext: &[u8]) -> Option<Vec<u8>> {
        let state = self.maybe_roll(TimeBase::now().ok()?)?;

        // Decrypt with the current key; if that fails, try with the previous.
        state
            .current
            .decrypt(ciphertext)
            .or_else(|| {
                state
                    .previous
                    .as_ref()
                    .and_then(|previous| previous.decrypt(ciphertext))
            })
    }
}

/// A concrete, safe ticket creation mechanism.
pub struct Ticketer {}

fn generate_inner() -> Result<Box<dyn ProducesTickets>, rand::GetRandomFailed> {
    Ok(Box::new(AeadTicketer::new()?))
}

impl Ticketer {
    /// Make the recommended Ticketer.  This produces tickets
    /// with a 12 hour life and randomly generated keys.
    ///
    /// The encryption mechanism used in Chacha20Poly1305.
    pub fn new() -> Result<Arc<dyn ProducesTickets>, Error> {
        Ok(Arc::new(TicketSwitcher::new(6 * 60 * 60, generate_inner)?))
    }
}

#[test]
fn basic_pairwise_test() {
    let t = Ticketer::new().unwrap();
    assert!(t.enabled());
    let cipher = t.encrypt(b"hello world").unwrap();
    let plain = t.decrypt(&cipher).unwrap();
    assert_eq!(plain, b"hello world");
}

#[test]
fn ticketswitcher_switching_test() {
    let t = Arc::new(TicketSwitcher::new(1, generate_inner).unwrap());
    let now = TimeBase::now().unwrap();
    let cipher1 = t.encrypt(b"ticket 1").unwrap();
    assert_eq!(t.decrypt(&cipher1).unwrap(), b"ticket 1");
    {
        // Trigger new ticketer
        t.maybe_roll(TimeBase(now.0 + std::time::Duration::from_secs(10)));
    }
    let cipher2 = t.encrypt(b"ticket 2").unwrap();
    assert_eq!(t.decrypt(&cipher1).unwrap(), b"ticket 1");
    assert_eq!(t.decrypt(&cipher2).unwrap(), b"ticket 2");
    {
        // Trigger new ticketer
        t.maybe_roll(TimeBase(now.0 + std::time::Duration::from_secs(20)));
    }
    let cipher3 = t.encrypt(b"ticket 3").unwrap();
    assert!(t.decrypt(&cipher1).is_none());
    assert_eq!(t.decrypt(&cipher2).unwrap(), b"ticket 2");
    assert_eq!(t.decrypt(&cipher3).unwrap(), b"ticket 3");
}

#[cfg(test)]
fn fail_generator() -> Result<Box<dyn ProducesTickets>, rand::GetRandomFailed> {
    Err(rand::GetRandomFailed)
}

#[test]
fn ticketswitcher_recover_test() {
    let mut t = TicketSwitcher::new(1, generate_inner).unwrap();
    let now = TimeBase::now().unwrap();
    let cipher1 = t.encrypt(b"ticket 1").unwrap();
    assert_eq!(t.decrypt(&cipher1).unwrap(), b"ticket 1");
    t.generator = fail_generator;
    {
        // Failed new ticketer
        t.maybe_roll(TimeBase(now.0 + std::time::Duration::from_secs(10)));
    }
    t.generator = generate_inner;
    let cipher2 = t.encrypt(b"ticket 2").unwrap();
    assert_eq!(t.decrypt(&cipher1).unwrap(), b"ticket 1");
    assert_eq!(t.decrypt(&cipher2).unwrap(), b"ticket 2");
    {
        // recover
        t.maybe_roll(TimeBase(now.0 + std::time::Duration::from_secs(20)));
    }
    let cipher3 = t.encrypt(b"ticket 3").unwrap();
    assert!(t.decrypt(&cipher1).is_none());
    assert_eq!(t.decrypt(&cipher2).unwrap(), b"ticket 2");
    assert_eq!(t.decrypt(&cipher3).unwrap(), b"ticket 3");
}