logo
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
//! SHA-512
use crate::consts::{H384, H512, H512_TRUNC_224, H512_TRUNC_256, STATE_LEN};
use block_buffer::BlockBuffer;
use core::slice::from_ref;
use digest::consts::{U128, U28, U32, U48, U64};
use digest::generic_array::GenericArray;
use digest::{BlockInput, FixedOutputDirty, Reset, Update};

type BlockSize = U128;

/// Structure that keeps state of the Sha-512 operation and
/// contains the logic necessary to perform the final calculations.
#[derive(Clone)]
struct Engine512 {
    len: u128,
    buffer: BlockBuffer<BlockSize>,
    state: [u64; 8],
}

impl Engine512 {
    fn new(h: &[u64; STATE_LEN]) -> Engine512 {
        Engine512 {
            len: 0,
            buffer: Default::default(),
            state: *h,
        }
    }

    fn update(&mut self, input: &[u8]) {
        self.len += (input.len() as u128) << 3;
        let s = &mut self.state;
        self.buffer.input_blocks(input, |b| compress512(s, b));
    }

    fn finish(&mut self) {
        let s = &mut self.state;
        self.buffer
            .len128_padding_be(self.len, |d| compress512(s, from_ref(d)));
    }

    fn reset(&mut self, h: &[u64; STATE_LEN]) {
        self.len = 0;
        self.buffer.reset();
        self.state = *h;
    }
}

/// The SHA-512 hash algorithm with the SHA-512 initial hash value.
#[derive(Clone)]
pub struct Sha512 {
    engine: Engine512,
}

impl Default for Sha512 {
    fn default() -> Self {
        Sha512 {
            engine: Engine512::new(&H512),
        }
    }
}

impl BlockInput for Sha512 {
    type BlockSize = BlockSize;
}

impl Update for Sha512 {
    fn update(&mut self, input: impl AsRef<[u8]>) {
        self.engine.update(input.as_ref());
    }
}

impl FixedOutputDirty for Sha512 {
    type OutputSize = U64;

    fn finalize_into_dirty(&mut self, out: &mut digest::Output<Self>) {
        self.engine.finish();
        let s = self.engine.state;
        for (chunk, v) in out.chunks_exact_mut(8).zip(s.iter()) {
            chunk.copy_from_slice(&v.to_be_bytes());
        }
    }
}

impl Reset for Sha512 {
    fn reset(&mut self) {
        self.engine.reset(&H512);
    }
}

/// The SHA-512 hash algorithm with the SHA-384 initial hash value. The result
/// is truncated to 384 bits.
#[derive(Clone)]
pub struct Sha384 {
    engine: Engine512,
}

impl Default for Sha384 {
    fn default() -> Self {
        Sha384 {
            engine: Engine512::new(&H384),
        }
    }
}

impl BlockInput for Sha384 {
    type BlockSize = BlockSize;
}

impl Update for Sha384 {
    fn update(&mut self, input: impl AsRef<[u8]>) {
        self.engine.update(input.as_ref());
    }
}

impl FixedOutputDirty for Sha384 {
    type OutputSize = U48;

    fn finalize_into_dirty(&mut self, out: &mut digest::Output<Self>) {
        self.engine.finish();
        let s = &self.engine.state[..6];
        for (chunk, v) in out.chunks_exact_mut(8).zip(s.iter()) {
            chunk.copy_from_slice(&v.to_be_bytes());
        }
    }
}

impl Reset for Sha384 {
    fn reset(&mut self) {
        self.engine.reset(&H384);
    }
}

/// The SHA-512 hash algorithm with the SHA-512/256 initial hash value. The
/// result is truncated to 256 bits.
#[derive(Clone)]
pub struct Sha512Trunc256 {
    engine: Engine512,
}

impl Default for Sha512Trunc256 {
    fn default() -> Self {
        Sha512Trunc256 {
            engine: Engine512::new(&H512_TRUNC_256),
        }
    }
}

impl BlockInput for Sha512Trunc256 {
    type BlockSize = BlockSize;
}

impl Update for Sha512Trunc256 {
    fn update(&mut self, input: impl AsRef<[u8]>) {
        self.engine.update(input.as_ref());
    }
}

impl FixedOutputDirty for Sha512Trunc256 {
    type OutputSize = U32;

    fn finalize_into_dirty(&mut self, out: &mut digest::Output<Self>) {
        self.engine.finish();
        let s = &self.engine.state[..4];
        for (chunk, v) in out.chunks_exact_mut(8).zip(s.iter()) {
            chunk.copy_from_slice(&v.to_be_bytes());
        }
    }
}

impl Reset for Sha512Trunc256 {
    fn reset(&mut self) {
        self.engine.reset(&H512_TRUNC_256);
    }
}

/// The SHA-512 hash algorithm with the SHA-512/224 initial hash value.
/// The result is truncated to 224 bits.
#[derive(Clone)]
pub struct Sha512Trunc224 {
    engine: Engine512,
}

impl Default for Sha512Trunc224 {
    fn default() -> Self {
        Sha512Trunc224 {
            engine: Engine512::new(&H512_TRUNC_224),
        }
    }
}

impl BlockInput for Sha512Trunc224 {
    type BlockSize = BlockSize;
}

impl Update for Sha512Trunc224 {
    fn update(&mut self, input: impl AsRef<[u8]>) {
        self.engine.update(input.as_ref());
    }
}

impl FixedOutputDirty for Sha512Trunc224 {
    type OutputSize = U28;

    fn finalize_into_dirty(&mut self, out: &mut digest::Output<Self>) {
        self.engine.finish();
        let s = &self.engine.state;
        for (chunk, v) in out.chunks_exact_mut(8).zip(s[..3].iter()) {
            chunk.copy_from_slice(&v.to_be_bytes());
        }
        out[24..28].copy_from_slice(&s[3].to_be_bytes()[..4]);
    }
}

impl Reset for Sha512Trunc224 {
    fn reset(&mut self) {
        self.engine.reset(&H512_TRUNC_224);
    }
}

opaque_debug::implement!(Sha384);
opaque_debug::implement!(Sha512);
opaque_debug::implement!(Sha512Trunc224);
opaque_debug::implement!(Sha512Trunc256);

digest::impl_write!(Sha384);
digest::impl_write!(Sha512);
digest::impl_write!(Sha512Trunc224);
digest::impl_write!(Sha512Trunc256);

cfg_if::cfg_if! {
    if #[cfg(feature = "force-soft")] {
        mod soft;
        use soft::compress;
    } else if #[cfg(any(target_arch = "x86", target_arch = "x86_64"))] {
        #[cfg(not(feature = "asm"))]
        mod soft;
        #[cfg(feature = "asm")]
        mod soft {
            pub(crate) fn compress(state: &mut [u64; 8], blocks: &[[u8; 128]]) {
                sha2_asm::compress512(state, blocks);
            }
        }
        mod x86;
        use x86::compress;
    } else {
        mod soft;
        use soft::compress;
    }
}

/// Raw SHA-512 compression function.
///
/// This is a low-level "hazmat" API which provides direct access to the core
/// functionality of SHA-512.
#[cfg_attr(docsrs, doc(cfg(feature = "compress")))]
pub fn compress512(state: &mut [u64; 8], blocks: &[GenericArray<u8, U128>]) {
    // SAFETY: GenericArray<u8, U128> and [u8; 128] have
    // exactly the same memory layout
    #[allow(unsafe_code)]
    let blocks: &[[u8; 128]] = unsafe { &*(blocks as *const _ as *const [[u8; 128]]) };
    compress(state, blocks)
}