1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021
use crate::runtime::handle::Handle;
use crate::runtime::{blocking, driver, Callback, Runtime, Spawner};
use std::fmt;
use std::io;
use std::time::Duration;
/// Builds Tokio Runtime with custom configuration values.
///
/// Methods can be chained in order to set the configuration values. The
/// Runtime is constructed by calling [`build`].
///
/// New instances of `Builder` are obtained via [`Builder::new_multi_thread`]
/// or [`Builder::new_current_thread`].
///
/// See function level documentation for details on the various configuration
/// settings.
///
/// [`build`]: method@Self::build
/// [`Builder::new_multi_thread`]: method@Self::new_multi_thread
/// [`Builder::new_current_thread`]: method@Self::new_current_thread
///
/// # Examples
///
/// ```
/// use tokio::runtime::Builder;
///
/// fn main() {
/// // build runtime
/// let runtime = Builder::new_multi_thread()
/// .worker_threads(4)
/// .thread_name("my-custom-name")
/// .thread_stack_size(3 * 1024 * 1024)
/// .build()
/// .unwrap();
///
/// // use runtime ...
/// }
/// ```
pub struct Builder {
/// Runtime type
kind: Kind,
/// Whether or not to enable the I/O driver
enable_io: bool,
/// Whether or not to enable the time driver
enable_time: bool,
/// Whether or not the clock should start paused.
start_paused: bool,
/// The number of worker threads, used by Runtime.
///
/// Only used when not using the current-thread executor.
worker_threads: Option<usize>,
/// Cap on thread usage.
max_blocking_threads: usize,
/// Name fn used for threads spawned by the runtime.
pub(super) thread_name: ThreadNameFn,
/// Stack size used for threads spawned by the runtime.
pub(super) thread_stack_size: Option<usize>,
/// Callback to run after each thread starts.
pub(super) after_start: Option<Callback>,
/// To run before each worker thread stops
pub(super) before_stop: Option<Callback>,
/// To run before each worker thread is parked.
pub(super) before_park: Option<Callback>,
/// To run after each thread is unparked.
pub(super) after_unpark: Option<Callback>,
/// Customizable keep alive timeout for BlockingPool
pub(super) keep_alive: Option<Duration>,
/// How many ticks before pulling a task from the global/remote queue?
pub(super) global_queue_interval: u32,
/// How many ticks before yielding to the driver for timer and I/O events?
pub(super) event_interval: u32,
/// When true, the multi-threade scheduler LIFO slot should not be used.
///
/// This option should only be exposed as unstable.
pub(super) disable_lifo_slot: bool,
#[cfg(tokio_unstable)]
pub(super) unhandled_panic: UnhandledPanic,
}
cfg_unstable! {
/// How the runtime should respond to unhandled panics.
///
/// Instances of `UnhandledPanic` are passed to `Builder::unhandled_panic`
/// to configure the runtime behavior when a spawned task panics.
///
/// See [`Builder::unhandled_panic`] for more details.
#[derive(Debug, Clone)]
#[non_exhaustive]
pub enum UnhandledPanic {
/// The runtime should ignore panics on spawned tasks.
///
/// The panic is forwarded to the task's [`JoinHandle`] and all spawned
/// tasks continue running normally.
///
/// This is the default behavior.
///
/// # Examples
///
/// ```
/// use tokio::runtime::{self, UnhandledPanic};
///
/// # pub fn main() {
/// let rt = runtime::Builder::new_current_thread()
/// .unhandled_panic(UnhandledPanic::Ignore)
/// .build()
/// .unwrap();
///
/// let task1 = rt.spawn(async { panic!("boom"); });
/// let task2 = rt.spawn(async {
/// // This task completes normally
/// "done"
/// });
///
/// rt.block_on(async {
/// // The panic on the first task is forwarded to the `JoinHandle`
/// assert!(task1.await.is_err());
///
/// // The second task completes normally
/// assert!(task2.await.is_ok());
/// })
/// # }
/// ```
///
/// [`JoinHandle`]: struct@crate::task::JoinHandle
Ignore,
/// The runtime should immediately shutdown if a spawned task panics.
///
/// The runtime will immediately shutdown even if the panicked task's
/// [`JoinHandle`] is still available. All further spawned tasks will be
/// immediately dropped and call to [`Runtime::block_on`] will panic.
///
/// # Examples
///
/// ```should_panic
/// use tokio::runtime::{self, UnhandledPanic};
///
/// # pub fn main() {
/// let rt = runtime::Builder::new_current_thread()
/// .unhandled_panic(UnhandledPanic::ShutdownRuntime)
/// .build()
/// .unwrap();
///
/// rt.spawn(async { panic!("boom"); });
/// rt.spawn(async {
/// // This task never completes.
/// });
///
/// rt.block_on(async {
/// // Do some work
/// # loop { tokio::task::yield_now().await; }
/// })
/// # }
/// ```
///
/// [`JoinHandle`]: struct@crate::task::JoinHandle
ShutdownRuntime,
}
}
pub(crate) type ThreadNameFn = std::sync::Arc<dyn Fn() -> String + Send + Sync + 'static>;
pub(crate) enum Kind {
CurrentThread,
#[cfg(all(feature = "rt-multi-thread", not(tokio_wasi)))]
MultiThread,
}
impl Builder {
/// Returns a new builder with the current thread scheduler selected.
///
/// Configuration methods can be chained on the return value.
///
/// To spawn non-`Send` tasks on the resulting runtime, combine it with a
/// [`LocalSet`].
///
/// [`LocalSet`]: crate::task::LocalSet
pub fn new_current_thread() -> Builder {
#[cfg(loom)]
const EVENT_INTERVAL: u32 = 4;
// The number `61` is fairly arbitrary. I believe this value was copied from golang.
#[cfg(not(loom))]
const EVENT_INTERVAL: u32 = 61;
Builder::new(Kind::CurrentThread, 31, EVENT_INTERVAL)
}
cfg_not_wasi! {
/// Returns a new builder with the multi thread scheduler selected.
///
/// Configuration methods can be chained on the return value.
#[cfg(feature = "rt-multi-thread")]
#[cfg_attr(docsrs, doc(cfg(feature = "rt-multi-thread")))]
pub fn new_multi_thread() -> Builder {
// The number `61` is fairly arbitrary. I believe this value was copied from golang.
Builder::new(Kind::MultiThread, 61, 61)
}
}
/// Returns a new runtime builder initialized with default configuration
/// values.
///
/// Configuration methods can be chained on the return value.
pub(crate) fn new(kind: Kind, global_queue_interval: u32, event_interval: u32) -> Builder {
Builder {
kind,
// I/O defaults to "off"
enable_io: false,
// Time defaults to "off"
enable_time: false,
// The clock starts not-paused
start_paused: false,
// Default to lazy auto-detection (one thread per CPU core)
worker_threads: None,
max_blocking_threads: 512,
// Default thread name
thread_name: std::sync::Arc::new(|| "tokio-runtime-worker".into()),
// Do not set a stack size by default
thread_stack_size: None,
// No worker thread callbacks
after_start: None,
before_stop: None,
before_park: None,
after_unpark: None,
keep_alive: None,
// Defaults for these values depend on the scheduler kind, so we get them
// as parameters.
global_queue_interval,
event_interval,
#[cfg(tokio_unstable)]
unhandled_panic: UnhandledPanic::Ignore,
disable_lifo_slot: false,
}
}
/// Enables both I/O and time drivers.
///
/// Doing this is a shorthand for calling `enable_io` and `enable_time`
/// individually. If additional components are added to Tokio in the future,
/// `enable_all` will include these future components.
///
/// # Examples
///
/// ```
/// use tokio::runtime;
///
/// let rt = runtime::Builder::new_multi_thread()
/// .enable_all()
/// .build()
/// .unwrap();
/// ```
pub fn enable_all(&mut self) -> &mut Self {
#[cfg(any(
feature = "net",
all(unix, feature = "process"),
all(unix, feature = "signal")
))]
self.enable_io();
#[cfg(feature = "time")]
self.enable_time();
self
}
/// Sets the number of worker threads the `Runtime` will use.
///
/// This can be any number above 0 though it is advised to keep this value
/// on the smaller side.
///
/// # Default
///
/// The default value is the number of cores available to the system.
///
/// When using the `current_thread` runtime this method has no effect.
///
/// # Examples
///
/// ## Multi threaded runtime with 4 threads
///
/// ```
/// use tokio::runtime;
///
/// // This will spawn a work-stealing runtime with 4 worker threads.
/// let rt = runtime::Builder::new_multi_thread()
/// .worker_threads(4)
/// .build()
/// .unwrap();
///
/// rt.spawn(async move {});
/// ```
///
/// ## Current thread runtime (will only run on the current thread via `Runtime::block_on`)
///
/// ```
/// use tokio::runtime;
///
/// // Create a runtime that _must_ be driven from a call
/// // to `Runtime::block_on`.
/// let rt = runtime::Builder::new_current_thread()
/// .build()
/// .unwrap();
///
/// // This will run the runtime and future on the current thread
/// rt.block_on(async move {});
/// ```
///
/// # Panics
///
/// This will panic if `val` is not larger than `0`.
#[track_caller]
pub fn worker_threads(&mut self, val: usize) -> &mut Self {
assert!(val > 0, "Worker threads cannot be set to 0");
self.worker_threads = Some(val);
self
}
/// Specifies the limit for additional threads spawned by the Runtime.
///
/// These threads are used for blocking operations like tasks spawned
/// through [`spawn_blocking`]. Unlike the [`worker_threads`], they are not
/// always active and will exit if left idle for too long. You can change
/// this timeout duration with [`thread_keep_alive`].
///
/// The default value is 512.
///
/// # Panics
///
/// This will panic if `val` is not larger than `0`.
///
/// # Upgrading from 0.x
///
/// In old versions `max_threads` limited both blocking and worker threads, but the
/// current `max_blocking_threads` does not include async worker threads in the count.
///
/// [`spawn_blocking`]: fn@crate::task::spawn_blocking
/// [`worker_threads`]: Self::worker_threads
/// [`thread_keep_alive`]: Self::thread_keep_alive
#[track_caller]
#[cfg_attr(docsrs, doc(alias = "max_threads"))]
pub fn max_blocking_threads(&mut self, val: usize) -> &mut Self {
assert!(val > 0, "Max blocking threads cannot be set to 0");
self.max_blocking_threads = val;
self
}
/// Sets name of threads spawned by the `Runtime`'s thread pool.
///
/// The default name is "tokio-runtime-worker".
///
/// # Examples
///
/// ```
/// # use tokio::runtime;
///
/// # pub fn main() {
/// let rt = runtime::Builder::new_multi_thread()
/// .thread_name("my-pool")
/// .build();
/// # }
/// ```
pub fn thread_name(&mut self, val: impl Into<String>) -> &mut Self {
let val = val.into();
self.thread_name = std::sync::Arc::new(move || val.clone());
self
}
/// Sets a function used to generate the name of threads spawned by the `Runtime`'s thread pool.
///
/// The default name fn is `|| "tokio-runtime-worker".into()`.
///
/// # Examples
///
/// ```
/// # use tokio::runtime;
/// # use std::sync::atomic::{AtomicUsize, Ordering};
/// # pub fn main() {
/// let rt = runtime::Builder::new_multi_thread()
/// .thread_name_fn(|| {
/// static ATOMIC_ID: AtomicUsize = AtomicUsize::new(0);
/// let id = ATOMIC_ID.fetch_add(1, Ordering::SeqCst);
/// format!("my-pool-{}", id)
/// })
/// .build();
/// # }
/// ```
pub fn thread_name_fn<F>(&mut self, f: F) -> &mut Self
where
F: Fn() -> String + Send + Sync + 'static,
{
self.thread_name = std::sync::Arc::new(f);
self
}
/// Sets the stack size (in bytes) for worker threads.
///
/// The actual stack size may be greater than this value if the platform
/// specifies minimal stack size.
///
/// The default stack size for spawned threads is 2 MiB, though this
/// particular stack size is subject to change in the future.
///
/// # Examples
///
/// ```
/// # use tokio::runtime;
///
/// # pub fn main() {
/// let rt = runtime::Builder::new_multi_thread()
/// .thread_stack_size(32 * 1024)
/// .build();
/// # }
/// ```
pub fn thread_stack_size(&mut self, val: usize) -> &mut Self {
self.thread_stack_size = Some(val);
self
}
/// Executes function `f` after each thread is started but before it starts
/// doing work.
///
/// This is intended for bookkeeping and monitoring use cases.
///
/// # Examples
///
/// ```
/// # use tokio::runtime;
/// # pub fn main() {
/// let runtime = runtime::Builder::new_multi_thread()
/// .on_thread_start(|| {
/// println!("thread started");
/// })
/// .build();
/// # }
/// ```
#[cfg(not(loom))]
pub fn on_thread_start<F>(&mut self, f: F) -> &mut Self
where
F: Fn() + Send + Sync + 'static,
{
self.after_start = Some(std::sync::Arc::new(f));
self
}
/// Executes function `f` before each thread stops.
///
/// This is intended for bookkeeping and monitoring use cases.
///
/// # Examples
///
/// ```
/// # use tokio::runtime;
/// # pub fn main() {
/// let runtime = runtime::Builder::new_multi_thread()
/// .on_thread_stop(|| {
/// println!("thread stopping");
/// })
/// .build();
/// # }
/// ```
#[cfg(not(loom))]
pub fn on_thread_stop<F>(&mut self, f: F) -> &mut Self
where
F: Fn() + Send + Sync + 'static,
{
self.before_stop = Some(std::sync::Arc::new(f));
self
}
/// Executes function `f` just before a thread is parked (goes idle).
/// `f` is called within the Tokio context, so functions like [`tokio::spawn`](crate::spawn)
/// can be called, and may result in this thread being unparked immediately.
///
/// This can be used to start work only when the executor is idle, or for bookkeeping
/// and monitoring purposes.
///
/// Note: There can only be one park callback for a runtime; calling this function
/// more than once replaces the last callback defined, rather than adding to it.
///
/// # Examples
///
/// ## Multithreaded executor
/// ```
/// # use std::sync::Arc;
/// # use std::sync::atomic::{AtomicBool, Ordering};
/// # use tokio::runtime;
/// # use tokio::sync::Barrier;
/// # pub fn main() {
/// let once = AtomicBool::new(true);
/// let barrier = Arc::new(Barrier::new(2));
///
/// let runtime = runtime::Builder::new_multi_thread()
/// .worker_threads(1)
/// .on_thread_park({
/// let barrier = barrier.clone();
/// move || {
/// let barrier = barrier.clone();
/// if once.swap(false, Ordering::Relaxed) {
/// tokio::spawn(async move { barrier.wait().await; });
/// }
/// }
/// })
/// .build()
/// .unwrap();
///
/// runtime.block_on(async {
/// barrier.wait().await;
/// })
/// # }
/// ```
/// ## Current thread executor
/// ```
/// # use std::sync::Arc;
/// # use std::sync::atomic::{AtomicBool, Ordering};
/// # use tokio::runtime;
/// # use tokio::sync::Barrier;
/// # pub fn main() {
/// let once = AtomicBool::new(true);
/// let barrier = Arc::new(Barrier::new(2));
///
/// let runtime = runtime::Builder::new_current_thread()
/// .on_thread_park({
/// let barrier = barrier.clone();
/// move || {
/// let barrier = barrier.clone();
/// if once.swap(false, Ordering::Relaxed) {
/// tokio::spawn(async move { barrier.wait().await; });
/// }
/// }
/// })
/// .build()
/// .unwrap();
///
/// runtime.block_on(async {
/// barrier.wait().await;
/// })
/// # }
/// ```
#[cfg(not(loom))]
pub fn on_thread_park<F>(&mut self, f: F) -> &mut Self
where
F: Fn() + Send + Sync + 'static,
{
self.before_park = Some(std::sync::Arc::new(f));
self
}
/// Executes function `f` just after a thread unparks (starts executing tasks).
///
/// This is intended for bookkeeping and monitoring use cases; note that work
/// in this callback will increase latencies when the application has allowed one or
/// more runtime threads to go idle.
///
/// Note: There can only be one unpark callback for a runtime; calling this function
/// more than once replaces the last callback defined, rather than adding to it.
///
/// # Examples
///
/// ```
/// # use tokio::runtime;
/// # pub fn main() {
/// let runtime = runtime::Builder::new_multi_thread()
/// .on_thread_unpark(|| {
/// println!("thread unparking");
/// })
/// .build();
///
/// runtime.unwrap().block_on(async {
/// tokio::task::yield_now().await;
/// println!("Hello from Tokio!");
/// })
/// # }
/// ```
#[cfg(not(loom))]
pub fn on_thread_unpark<F>(&mut self, f: F) -> &mut Self
where
F: Fn() + Send + Sync + 'static,
{
self.after_unpark = Some(std::sync::Arc::new(f));
self
}
/// Creates the configured `Runtime`.
///
/// The returned `Runtime` instance is ready to spawn tasks.
///
/// # Examples
///
/// ```
/// use tokio::runtime::Builder;
///
/// let rt = Builder::new_multi_thread().build().unwrap();
///
/// rt.block_on(async {
/// println!("Hello from the Tokio runtime");
/// });
/// ```
pub fn build(&mut self) -> io::Result<Runtime> {
match &self.kind {
Kind::CurrentThread => self.build_current_thread_runtime(),
#[cfg(all(feature = "rt-multi-thread", not(tokio_wasi)))]
Kind::MultiThread => self.build_threaded_runtime(),
}
}
fn get_cfg(&self) -> driver::Cfg {
driver::Cfg {
enable_pause_time: match self.kind {
Kind::CurrentThread => true,
#[cfg(all(feature = "rt-multi-thread", not(tokio_wasi)))]
Kind::MultiThread => false,
},
enable_io: self.enable_io,
enable_time: self.enable_time,
start_paused: self.start_paused,
}
}
/// Sets a custom timeout for a thread in the blocking pool.
///
/// By default, the timeout for a thread is set to 10 seconds. This can
/// be overridden using .thread_keep_alive().
///
/// # Example
///
/// ```
/// # use tokio::runtime;
/// # use std::time::Duration;
/// # pub fn main() {
/// let rt = runtime::Builder::new_multi_thread()
/// .thread_keep_alive(Duration::from_millis(100))
/// .build();
/// # }
/// ```
pub fn thread_keep_alive(&mut self, duration: Duration) -> &mut Self {
self.keep_alive = Some(duration);
self
}
/// Sets the number of scheduler ticks after which the scheduler will poll the global
/// task queue.
///
/// A scheduler "tick" roughly corresponds to one `poll` invocation on a task.
///
/// By default the global queue interval is:
///
/// * `31` for the current-thread scheduler.
/// * `61` for the multithreaded scheduler.
///
/// Schedulers have a local queue of already-claimed tasks, and a global queue of incoming
/// tasks. Setting the interval to a smaller value increases the fairness of the scheduler,
/// at the cost of more synchronization overhead. That can be beneficial for prioritizing
/// getting started on new work, especially if tasks frequently yield rather than complete
/// or await on further I/O. Conversely, a higher value prioritizes existing work, and
/// is a good choice when most tasks quickly complete polling.
///
/// # Examples
///
/// ```
/// # use tokio::runtime;
/// # pub fn main() {
/// let rt = runtime::Builder::new_multi_thread()
/// .global_queue_interval(31)
/// .build();
/// # }
/// ```
pub fn global_queue_interval(&mut self, val: u32) -> &mut Self {
self.global_queue_interval = val;
self
}
/// Sets the number of scheduler ticks after which the scheduler will poll for
/// external events (timers, I/O, and so on).
///
/// A scheduler "tick" roughly corresponds to one `poll` invocation on a task.
///
/// By default, the event interval is `61` for all scheduler types.
///
/// Setting the event interval determines the effective "priority" of delivering
/// these external events (which may wake up additional tasks), compared to
/// executing tasks that are currently ready to run. A smaller value is useful
/// when tasks frequently spend a long time in polling, or frequently yield,
/// which can result in overly long delays picking up I/O events. Conversely,
/// picking up new events requires extra synchronization and syscall overhead,
/// so if tasks generally complete their polling quickly, a higher event interval
/// will minimize that overhead while still keeping the scheduler responsive to
/// events.
///
/// # Examples
///
/// ```
/// # use tokio::runtime;
/// # pub fn main() {
/// let rt = runtime::Builder::new_multi_thread()
/// .event_interval(31)
/// .build();
/// # }
/// ```
pub fn event_interval(&mut self, val: u32) -> &mut Self {
self.event_interval = val;
self
}
cfg_unstable! {
/// Configure how the runtime responds to an unhandled panic on a
/// spawned task.
///
/// By default, an unhandled panic (i.e. a panic not caught by
/// [`std::panic::catch_unwind`]) has no impact on the runtime's
/// execution. The panic is error value is forwarded to the task's
/// [`JoinHandle`] and all other spawned tasks continue running.
///
/// The `unhandled_panic` option enables configuring this behavior.
///
/// * `UnhandledPanic::Ignore` is the default behavior. Panics on
/// spawned tasks have no impact on the runtime's execution.
/// * `UnhandledPanic::ShutdownRuntime` will force the runtime to
/// shutdown immediately when a spawned task panics even if that
/// task's `JoinHandle` has not been dropped. All other spawned tasks
/// will immediately terminate and further calls to
/// [`Runtime::block_on`] will panic.
///
/// # Unstable
///
/// This option is currently unstable and its implementation is
/// incomplete. The API may change or be removed in the future. See
/// tokio-rs/tokio#4516 for more details.
///
/// # Examples
///
/// The following demonstrates a runtime configured to shutdown on
/// panic. The first spawned task panics and results in the runtime
/// shutting down. The second spawned task never has a chance to
/// execute. The call to `block_on` will panic due to the runtime being
/// forcibly shutdown.
///
/// ```should_panic
/// use tokio::runtime::{self, UnhandledPanic};
///
/// # pub fn main() {
/// let rt = runtime::Builder::new_current_thread()
/// .unhandled_panic(UnhandledPanic::ShutdownRuntime)
/// .build()
/// .unwrap();
///
/// rt.spawn(async { panic!("boom"); });
/// rt.spawn(async {
/// // This task never completes.
/// });
///
/// rt.block_on(async {
/// // Do some work
/// # loop { tokio::task::yield_now().await; }
/// })
/// # }
/// ```
///
/// [`JoinHandle`]: struct@crate::task::JoinHandle
pub fn unhandled_panic(&mut self, behavior: UnhandledPanic) -> &mut Self {
self.unhandled_panic = behavior;
self
}
/// Disables the LIFO task scheduler heuristic.
///
/// The multi-threaded scheduler includes a heuristic for optimizing
/// message-passing patterns. This heuristic results in the **last**
/// scheduled task being polled first.
///
/// To implement this heuristic, each worker thread has a slot which
/// holds the task that should be polled next. However, this slot cannot
/// be stolen by other worker threads, which can result in lower total
/// throughput when tasks tend to have longer poll times.
///
/// This configuration option will disable this heuristic resulting in
/// all scheduled tasks being pushed into the worker-local queue, which
/// is stealable.
///
/// Consider trying this option when the task "scheduled" time is high
/// but the runtime is underutilized. Use tokio-rs/tokio-metrics to
/// collect this data.
///
/// # Unstable
///
/// This configuration option is considered a workaround for the LIFO
/// slot not being stealable. When the slot becomes stealable, we will
/// revisit whther or not this option is necessary. See
/// tokio-rs/tokio#4941.
///
/// # Examples
///
/// ```
/// use tokio::runtime;
///
/// let rt = runtime::Builder::new_multi_thread()
/// .disable_lifo_slot()
/// .build()
/// .unwrap();
/// ```
pub fn disable_lifo_slot(&mut self) -> &mut Self {
self.disable_lifo_slot = true;
self
}
}
fn build_current_thread_runtime(&mut self) -> io::Result<Runtime> {
use crate::runtime::{Config, CurrentThread, HandleInner, Kind};
let (driver, resources) = driver::Driver::new(self.get_cfg())?;
// Blocking pool
let blocking_pool = blocking::create_blocking_pool(self, self.max_blocking_threads);
let blocking_spawner = blocking_pool.spawner().clone();
let handle_inner = HandleInner {
io_handle: resources.io_handle,
time_handle: resources.time_handle,
signal_handle: resources.signal_handle,
clock: resources.clock,
blocking_spawner,
};
// And now put a single-threaded scheduler on top of the timer. When
// there are no futures ready to do something, it'll let the timer or
// the reactor to generate some new stimuli for the futures to continue
// in their life.
let scheduler = CurrentThread::new(
driver,
handle_inner,
Config {
before_park: self.before_park.clone(),
after_unpark: self.after_unpark.clone(),
global_queue_interval: self.global_queue_interval,
event_interval: self.event_interval,
#[cfg(tokio_unstable)]
unhandled_panic: self.unhandled_panic.clone(),
disable_lifo_slot: self.disable_lifo_slot,
},
);
let spawner = Spawner::CurrentThread(scheduler.spawner().clone());
Ok(Runtime {
kind: Kind::CurrentThread(scheduler),
handle: Handle { spawner },
blocking_pool,
})
}
}
cfg_io_driver! {
impl Builder {
/// Enables the I/O driver.
///
/// Doing this enables using net, process, signal, and some I/O types on
/// the runtime.
///
/// # Examples
///
/// ```
/// use tokio::runtime;
///
/// let rt = runtime::Builder::new_multi_thread()
/// .enable_io()
/// .build()
/// .unwrap();
/// ```
pub fn enable_io(&mut self) -> &mut Self {
self.enable_io = true;
self
}
}
}
cfg_time! {
impl Builder {
/// Enables the time driver.
///
/// Doing this enables using `tokio::time` on the runtime.
///
/// # Examples
///
/// ```
/// use tokio::runtime;
///
/// let rt = runtime::Builder::new_multi_thread()
/// .enable_time()
/// .build()
/// .unwrap();
/// ```
pub fn enable_time(&mut self) -> &mut Self {
self.enable_time = true;
self
}
}
}
cfg_test_util! {
impl Builder {
/// Controls if the runtime's clock starts paused or advancing.
///
/// Pausing time requires the current-thread runtime; construction of
/// the runtime will panic otherwise.
///
/// # Examples
///
/// ```
/// use tokio::runtime;
///
/// let rt = runtime::Builder::new_current_thread()
/// .enable_time()
/// .start_paused(true)
/// .build()
/// .unwrap();
/// ```
pub fn start_paused(&mut self, start_paused: bool) -> &mut Self {
self.start_paused = start_paused;
self
}
}
}
cfg_rt_multi_thread! {
impl Builder {
fn build_threaded_runtime(&mut self) -> io::Result<Runtime> {
use crate::loom::sys::num_cpus;
use crate::runtime::{Config, HandleInner, Kind, MultiThread};
let core_threads = self.worker_threads.unwrap_or_else(num_cpus);
let (driver, resources) = driver::Driver::new(self.get_cfg())?;
// Create the blocking pool
let blocking_pool =
blocking::create_blocking_pool(self, self.max_blocking_threads + core_threads);
let blocking_spawner = blocking_pool.spawner().clone();
let handle_inner = HandleInner {
io_handle: resources.io_handle,
time_handle: resources.time_handle,
signal_handle: resources.signal_handle,
clock: resources.clock,
blocking_spawner,
};
let (scheduler, launch) = MultiThread::new(
core_threads,
driver,
handle_inner,
Config {
before_park: self.before_park.clone(),
after_unpark: self.after_unpark.clone(),
global_queue_interval: self.global_queue_interval,
event_interval: self.event_interval,
#[cfg(tokio_unstable)]
unhandled_panic: self.unhandled_panic.clone(),
disable_lifo_slot: self.disable_lifo_slot,
},
);
let spawner = Spawner::MultiThread(scheduler.spawner().clone());
// Create the runtime handle
let handle = Handle { spawner };
// Spawn the thread pool workers
let _enter = crate::runtime::context::enter(handle.clone());
launch.launch();
Ok(Runtime {
kind: Kind::MultiThread(scheduler),
handle,
blocking_pool,
})
}
}
}
impl fmt::Debug for Builder {
fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
fmt.debug_struct("Builder")
.field("worker_threads", &self.worker_threads)
.field("max_blocking_threads", &self.max_blocking_threads)
.field(
"thread_name",
&"<dyn Fn() -> String + Send + Sync + 'static>",
)
.field("thread_stack_size", &self.thread_stack_size)
.field("after_start", &self.after_start.as_ref().map(|_| "..."))
.field("before_stop", &self.before_stop.as_ref().map(|_| "..."))
.field("before_park", &self.before_park.as_ref().map(|_| "..."))
.field("after_unpark", &self.after_unpark.as_ref().map(|_| "..."))
.finish()
}
}