logo
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
use tracing_core::{
    metadata::Metadata,
    span,
    subscriber::{Interest, Subscriber},
    Event, LevelFilter,
};

use crate::{
    filter,
    layer::{Context, Layer},
    registry::LookupSpan,
};
#[cfg(all(feature = "registry", feature = "std"))]
use crate::{filter::FilterId, registry::Registry};
use core::{any::TypeId, cmp, fmt, marker::PhantomData};

/// A [`Subscriber`] composed of a `Subscriber` wrapped by one or more
/// [`Layer`]s.
///
/// [`Layer`]: crate::Layer
/// [`Subscriber`]: https://docs.rs/tracing-core/latest/tracing_core/trait.Subscriber.html
#[derive(Clone)]
pub struct Layered<L, I, S = I> {
    /// The layer.
    layer: L,

    /// The inner value that `self.layer` was layered onto.
    ///
    /// If this is also a `Layer`, then this `Layered` will implement `Layer`.
    /// If this is a `Subscriber`, then this `Layered` will implement
    /// `Subscriber` instead.
    inner: I,

    // These booleans are used to determine how to combine `Interest`s and max
    // level hints when per-layer filters are in use.
    /// Is `self.inner` a `Registry`?
    ///
    /// If so, when combining `Interest`s, we want to "bubble up" its
    /// `Interest`.
    inner_is_registry: bool,

    /// Does `self.layer` have per-layer filters?
    ///
    /// This will be true if:
    /// - `self.inner` is a `Filtered`.
    /// - `self.inner` is a tree of `Layered`s where _all_ arms of those
    ///   `Layered`s have per-layer filters.
    ///
    /// Otherwise, if it's a `Layered` with one per-layer filter in one branch,
    /// but a non-per-layer-filtered layer in the other branch, this will be
    /// _false_, because the `Layered` is already handling the combining of
    /// per-layer filter `Interest`s and max level hints with its non-filtered
    /// `Layer`.
    has_layer_filter: bool,

    /// Does `self.inner` have per-layer filters?
    ///
    /// This is determined according to the same rules as
    /// `has_layer_filter` above.
    inner_has_layer_filter: bool,
    _s: PhantomData<fn(S)>,
}

// === impl Layered ===

impl<L, S> Subscriber for Layered<L, S>
where
    L: Layer<S>,
    S: Subscriber,
{
    fn register_callsite(&self, metadata: &'static Metadata<'static>) -> Interest {
        self.pick_interest(self.layer.register_callsite(metadata), || {
            self.inner.register_callsite(metadata)
        })
    }

    fn enabled(&self, metadata: &Metadata<'_>) -> bool {
        if self.layer.enabled(metadata, self.ctx()) {
            // if the outer layer enables the callsite metadata, ask the subscriber.
            self.inner.enabled(metadata)
        } else {
            // otherwise, the callsite is disabled by the layer

            // If per-layer filters are in use, and we are short-circuiting
            // (rather than calling into the inner type), clear the current
            // per-layer filter `enabled` state.
            #[cfg(feature = "registry")]
            filter::FilterState::clear_enabled();

            false
        }
    }

    fn max_level_hint(&self) -> Option<LevelFilter> {
        self.pick_level_hint(self.layer.max_level_hint(), self.inner.max_level_hint())
    }

    fn new_span(&self, span: &span::Attributes<'_>) -> span::Id {
        let id = self.inner.new_span(span);
        self.layer.on_new_span(span, &id, self.ctx());
        id
    }

    fn record(&self, span: &span::Id, values: &span::Record<'_>) {
        self.inner.record(span, values);
        self.layer.on_record(span, values, self.ctx());
    }

    fn record_follows_from(&self, span: &span::Id, follows: &span::Id) {
        self.inner.record_follows_from(span, follows);
        self.layer.on_follows_from(span, follows, self.ctx());
    }

    fn event(&self, event: &Event<'_>) {
        self.inner.event(event);
        self.layer.on_event(event, self.ctx());
    }

    fn enter(&self, span: &span::Id) {
        self.inner.enter(span);
        self.layer.on_enter(span, self.ctx());
    }

    fn exit(&self, span: &span::Id) {
        self.inner.exit(span);
        self.layer.on_exit(span, self.ctx());
    }

    fn clone_span(&self, old: &span::Id) -> span::Id {
        let new = self.inner.clone_span(old);
        if &new != old {
            self.layer.on_id_change(old, &new, self.ctx())
        };
        new
    }

    #[inline]
    fn drop_span(&self, id: span::Id) {
        self.try_close(id);
    }

    fn try_close(&self, id: span::Id) -> bool {
        #[cfg(all(feature = "registry", feature = "std"))]
        let subscriber = &self.inner as &dyn Subscriber;
        #[cfg(all(feature = "registry", feature = "std"))]
        let mut guard = subscriber
            .downcast_ref::<Registry>()
            .map(|registry| registry.start_close(id.clone()));
        if self.inner.try_close(id.clone()) {
            // If we have a registry's close guard, indicate that the span is
            // closing.
            #[cfg(all(feature = "registry", feature = "std"))]
            {
                if let Some(g) = guard.as_mut() {
                    g.set_closing()
                };
            }

            self.layer.on_close(id, self.ctx());
            true
        } else {
            false
        }
    }

    #[inline]
    fn current_span(&self) -> span::Current {
        self.inner.current_span()
    }

    #[doc(hidden)]
    unsafe fn downcast_raw(&self, id: TypeId) -> Option<*const ()> {
        // Unlike the implementation of `Layer` for `Layered`, we don't have to
        // handle the "magic PLF downcast marker" here. If a `Layered`
        // implements `Subscriber`, we already know that the `inner` branch is
        // going to contain something that doesn't have per-layer filters (the
        // actual root `Subscriber`). Thus, a `Layered` that implements
        // `Subscriber` will always be propagating the root subscriber's
        // `Interest`/level hint, even if it includes a `Layer` that has
        // per-layer filters, because it will only ever contain layers where
        // _one_ child has per-layer filters.
        //
        // The complex per-layer filter detection logic is only relevant to
        // *trees* of layers, which involve the `Layer` implementation for
        // `Layered`, not *lists* of layers, where every `Layered` implements
        // `Subscriber`. Of course, a linked list can be thought of as a
        // degenerate tree...but luckily, we are able to make a type-level
        // distinction between individual `Layered`s that are definitely
        // list-shaped (their inner child implements `Subscriber`), and
        // `Layered`s that might be tree-shaped (the inner child is also a
        // `Layer`).

        // If downcasting to `Self`, return a pointer to `self`.
        if id == TypeId::of::<Self>() {
            return Some(self as *const _ as *const ());
        }

        self.layer
            .downcast_raw(id)
            .or_else(|| self.inner.downcast_raw(id))
    }
}

impl<S, A, B> Layer<S> for Layered<A, B, S>
where
    A: Layer<S>,
    B: Layer<S>,
    S: Subscriber,
{
    fn on_layer(&mut self, subscriber: &mut S) {
        self.layer.on_layer(subscriber);
        self.inner.on_layer(subscriber);
    }

    fn register_callsite(&self, metadata: &'static Metadata<'static>) -> Interest {
        self.pick_interest(self.layer.register_callsite(metadata), || {
            self.inner.register_callsite(metadata)
        })
    }

    fn enabled(&self, metadata: &Metadata<'_>, ctx: Context<'_, S>) -> bool {
        if self.layer.enabled(metadata, ctx.clone()) {
            // if the outer subscriber enables the callsite metadata, ask the inner layer.
            self.inner.enabled(metadata, ctx)
        } else {
            // otherwise, the callsite is disabled by this layer
            false
        }
    }

    fn max_level_hint(&self) -> Option<LevelFilter> {
        self.pick_level_hint(self.layer.max_level_hint(), self.inner.max_level_hint())
    }

    #[inline]
    fn on_new_span(&self, attrs: &span::Attributes<'_>, id: &span::Id, ctx: Context<'_, S>) {
        self.inner.on_new_span(attrs, id, ctx.clone());
        self.layer.on_new_span(attrs, id, ctx);
    }

    #[inline]
    fn on_record(&self, span: &span::Id, values: &span::Record<'_>, ctx: Context<'_, S>) {
        self.inner.on_record(span, values, ctx.clone());
        self.layer.on_record(span, values, ctx);
    }

    #[inline]
    fn on_follows_from(&self, span: &span::Id, follows: &span::Id, ctx: Context<'_, S>) {
        self.inner.on_follows_from(span, follows, ctx.clone());
        self.layer.on_follows_from(span, follows, ctx);
    }

    #[inline]
    fn on_event(&self, event: &Event<'_>, ctx: Context<'_, S>) {
        self.inner.on_event(event, ctx.clone());
        self.layer.on_event(event, ctx);
    }

    #[inline]
    fn on_enter(&self, id: &span::Id, ctx: Context<'_, S>) {
        self.inner.on_enter(id, ctx.clone());
        self.layer.on_enter(id, ctx);
    }

    #[inline]
    fn on_exit(&self, id: &span::Id, ctx: Context<'_, S>) {
        self.inner.on_exit(id, ctx.clone());
        self.layer.on_exit(id, ctx);
    }

    #[inline]
    fn on_close(&self, id: span::Id, ctx: Context<'_, S>) {
        self.inner.on_close(id.clone(), ctx.clone());
        self.layer.on_close(id, ctx);
    }

    #[inline]
    fn on_id_change(&self, old: &span::Id, new: &span::Id, ctx: Context<'_, S>) {
        self.inner.on_id_change(old, new, ctx.clone());
        self.layer.on_id_change(old, new, ctx);
    }

    #[doc(hidden)]
    unsafe fn downcast_raw(&self, id: TypeId) -> Option<*const ()> {
        match id {
            // If downcasting to `Self`, return a pointer to `self`.
            id if id == TypeId::of::<Self>() => Some(self as *const _ as *const ()),

            // Oh, we're looking for per-layer filters!
            //
            // This should only happen if we are inside of another `Layered`,
            // and it's trying to determine how it should combine `Interest`s
            // and max level hints.
            //
            // In that case, this `Layered` should be considered to be
            // "per-layer filtered" if *both* the outer layer and the inner
            // layer/subscriber have per-layer filters. Otherwise, this `Layered
            // should *not* be considered per-layer filtered (even if one or the
            // other has per layer filters). If only one `Layer` is per-layer
            // filtered, *this* `Layered` will handle aggregating the `Interest`
            // and level hints on behalf of its children, returning the
            // aggregate (which is the value from the &non-per-layer-filtered*
            // child).
            //
            // Yes, this rule *is* slightly counter-intuitive, but it's
            // necessary due to a weird edge case that can occur when two
            // `Layered`s where one side is per-layer filtered and the other
            // isn't are `Layered` together to form a tree. If we didn't have
            // this rule, we would actually end up *ignoring* `Interest`s from
            // the non-per-layer-filtered layers, since both branches would
            // claim to have PLF.
            //
            // If you don't understand this...that's fine, just don't mess with
            // it. :)
            id if filter::is_plf_downcast_marker(id) => {
                self.layer.downcast_raw(id).and(self.inner.downcast_raw(id))
            }

            // Otherwise, try to downcast both branches normally...
            _ => self
                .layer
                .downcast_raw(id)
                .or_else(|| self.inner.downcast_raw(id)),
        }
    }
}

impl<'a, L, S> LookupSpan<'a> for Layered<L, S>
where
    S: Subscriber + LookupSpan<'a>,
{
    type Data = S::Data;

    fn span_data(&'a self, id: &span::Id) -> Option<Self::Data> {
        self.inner.span_data(id)
    }

    #[cfg(all(feature = "registry", feature = "std"))]
    fn register_filter(&mut self) -> FilterId {
        self.inner.register_filter()
    }
}

impl<L, S> Layered<L, S>
where
    S: Subscriber,
{
    fn ctx(&self) -> Context<'_, S> {
        Context::new(&self.inner)
    }
}

impl<A, B, S> Layered<A, B, S>
where
    A: Layer<S>,
    S: Subscriber,
{
    pub(super) fn new(layer: A, inner: B, inner_has_layer_filter: bool) -> Self {
        #[cfg(all(feature = "registry", feature = "std"))]
        let inner_is_registry = TypeId::of::<S>() == TypeId::of::<crate::registry::Registry>();

        #[cfg(not(all(feature = "registry", feature = "std")))]
        let inner_is_registry = false;

        let inner_has_layer_filter = inner_has_layer_filter || inner_is_registry;
        let has_layer_filter = filter::layer_has_plf(&layer);
        Self {
            layer,
            inner,
            has_layer_filter,
            inner_has_layer_filter,
            inner_is_registry,
            _s: PhantomData,
        }
    }

    fn pick_interest(&self, outer: Interest, inner: impl FnOnce() -> Interest) -> Interest {
        if self.has_layer_filter {
            return inner();
        }

        // If the outer layer has disabled the callsite, return now so that
        // the inner layer/subscriber doesn't get its hopes up.
        if outer.is_never() {
            // If per-layer filters are in use, and we are short-circuiting
            // (rather than calling into the inner type), clear the current
            // per-layer filter interest state.
            #[cfg(feature = "registry")]
            drop(filter::FilterState::take_interest());

            return outer;
        }

        // The `inner` closure will call `inner.register_callsite()`. We do this
        // before the `if` statement to  ensure that the inner subscriber is
        // informed that the callsite exists regardless of the outer layer's
        // filtering decision.
        let inner = inner();
        if outer.is_sometimes() {
            // if this interest is "sometimes", return "sometimes" to ensure that
            // filters are reevaluated.
            return outer;
        }

        // If there is a per-layer filter in the `inner` stack, and it returns
        // `never`, change the interest to `sometimes`, because the `outer`
        // layer didn't return `never`. This means that _some_ layer still wants
        // to see that callsite, even though the inner stack's per-layer filter
        // didn't want it. Therefore, returning `sometimes` will ensure
        // `enabled` is called so that the per-layer filter can skip that
        // span/event, while the `outer` layer still gets to see it.
        if inner.is_never() && self.inner_has_layer_filter {
            return Interest::sometimes();
        }

        // otherwise, allow the inner subscriber or collector to weigh in.
        inner
    }

    fn pick_level_hint(
        &self,
        outer_hint: Option<LevelFilter>,
        inner_hint: Option<LevelFilter>,
    ) -> Option<LevelFilter> {
        if self.inner_is_registry {
            return outer_hint;
        }

        if self.has_layer_filter && self.inner_has_layer_filter {
            return Some(cmp::max(outer_hint?, inner_hint?));
        }

        if self.has_layer_filter && inner_hint.is_none() {
            return None;
        }

        if self.inner_has_layer_filter && outer_hint.is_none() {
            return None;
        }

        cmp::max(outer_hint, inner_hint)
    }
}

impl<A, B, S> fmt::Debug for Layered<A, B, S>
where
    A: fmt::Debug,
    B: fmt::Debug,
{
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        #[cfg(all(feature = "registry", feature = "std"))]
        let alt = f.alternate();
        let mut s = f.debug_struct("Layered");
        // These additional fields are more verbose and usually only necessary
        // for internal debugging purposes, so only print them if alternate mode
        // is enabled.

        #[cfg(all(feature = "registry", feature = "std"))]
        {
            if alt {
                s.field("inner_is_registry", &self.inner_is_registry)
                    .field("has_layer_filter", &self.has_layer_filter)
                    .field("inner_has_layer_filter", &self.inner_has_layer_filter);
            }
        }

        s.field("layer", &self.layer)
            .field("inner", &self.inner)
            .finish()
    }
}