logo
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
use sharded_slab::{pool::Ref, Clear, Pool};
use thread_local::ThreadLocal;

use super::stack::SpanStack;
use crate::{
    filter::{FilterId, FilterMap, FilterState},
    registry::{
        extensions::{Extensions, ExtensionsInner, ExtensionsMut},
        LookupSpan, SpanData,
    },
    sync::RwLock,
};
use std::{
    cell::{self, Cell, RefCell},
    sync::atomic::{fence, AtomicUsize, Ordering},
};
use tracing_core::{
    dispatcher::{self, Dispatch},
    span::{self, Current, Id},
    Event, Interest, Metadata, Subscriber,
};

/// A shared, reusable store for spans.
///
/// A `Registry` is a [`Subscriber`] around which multiple [`Layer`]s
/// implementing various behaviors may be [added]. Unlike other types
/// implementing `Subscriber`, `Registry` does not actually record traces itself:
/// instead, it collects and stores span data that is exposed to any [`Layer`]s
/// wrapping it through implementations of the [`LookupSpan`] trait.
/// The `Registry` is responsible for storing span metadata, recording
/// relationships between spans, and tracking which spans are active and which
/// are closed. In addition, it provides a mechanism for [`Layer`]s to store
/// user-defined per-span data, called [extensions], in the registry. This
/// allows [`Layer`]-specific data to benefit from the `Registry`'s
/// high-performance concurrent storage.
///
/// This registry is implemented using a [lock-free sharded slab][slab], and is
/// highly optimized for concurrent access.
///
/// # Span ID Generation
///
/// Span IDs are not globally unique, but the registry ensures that
/// no two currently active spans have the same ID within a process.
///
/// One of the primary responsibilities of the registry is to generate [span
/// IDs]. Therefore, it's important for other code that interacts with the
/// registry, such as [`Layer`]s, to understand the guarantees of the
/// span IDs that are generated.
///
/// The registry's span IDs are guaranteed to be unique **at a given point
/// in time**. This means that an active span will never be assigned the
/// same ID as another **currently active** span. However, the registry
/// **will** eventually reuse the IDs of [closed] spans, although an ID
/// will never be reassigned immediately after a span has closed.
///
/// Spans are not [considered closed] by the `Registry` until *every*
/// [`Span`] reference with that ID has been dropped.
///
/// Thus: span IDs generated by the registry should be considered unique
/// only at a given point in time, and only relative to other spans
/// generated by the same process. Two spans with the same ID will not exist
/// in the same process concurrently. However, if historical span data is
/// being stored, the same ID may occur for multiple spans times in that
/// data. If spans must be uniquely identified in historical data, the user
/// code storing this data must assign its own unique identifiers to those
/// spans. A counter is generally sufficient for this.
///
/// Similarly, span IDs generated by the registry are not unique outside of
/// a given process. Distributed tracing systems may require identifiers
/// that are unique across multiple processes on multiple machines (for
/// example, [OpenTelemetry's `SpanId`s and `TraceId`s][ot]). `tracing` span
/// IDs generated by the registry should **not** be used for this purpose.
/// Instead, code which integrates with a distributed tracing system should
/// generate and propagate its own IDs according to the rules specified by
/// the distributed tracing system. These IDs can be associated with
/// `tracing` spans using [fields] and/or [stored span data].
///
/// [span IDs]: https://docs.rs/tracing-core/latest/tracing_core/span/struct.Id.html
/// [slab]: https://docs.rs/crate/sharded-slab/
/// [`Layer`]: crate::Layer
/// [added]: crate::layer::Layer#composing-layers
/// [extensions]: super::Extensions
/// [closed]: https://docs.rs/tracing/latest/tracing/span/index.html#closing-spans
/// [considered closed]: https://docs.rs/tracing-core/latest/tracing_core/subscriber/trait.Subscriber.html#method.try_close
/// [`Span`]: https://docs.rs/tracing/latest/tracing/span/struct.Span.html
/// [ot]: https://github.com/open-telemetry/opentelemetry-specification/blob/main/specification/trace/api.md#spancontext
/// [fields]: https://docs.rs/tracing-core/latest/tracing-core/field/index.html
/// [stored span data]: crate::registry::SpanData::extensions_mut
#[cfg(feature = "registry")]
#[cfg_attr(docsrs, doc(cfg(all(feature = "registry", feature = "std"))))]
#[derive(Debug)]
pub struct Registry {
    spans: Pool<DataInner>,
    current_spans: ThreadLocal<RefCell<SpanStack>>,
    next_filter_id: u8,
}

/// Span data stored in a [`Registry`].
///
/// The registry stores well-known data defined by tracing: span relationships,
/// metadata and reference counts. Additional user-defined data provided by
/// [`Layer`s], such as formatted fields, metrics, or distributed traces should
/// be stored in the [extensions] typemap.
///
/// [`Registry`]: struct.Registry.html
/// [`Layer`s]: ../layer/trait.Layer.html
/// [extensions]: struct.Extensions.html
#[cfg(feature = "registry")]
#[cfg_attr(docsrs, doc(cfg(all(feature = "registry", feature = "std"))))]
#[derive(Debug)]
pub struct Data<'a> {
    /// Immutable reference to the pooled `DataInner` entry.
    inner: Ref<'a, DataInner>,
}

/// Stored data associated with a span.
///
/// This type is pooled using `sharded_slab::Pool`; when a span is dropped, the
/// `DataInner` entry at that span's slab index is cleared in place and reused
/// by a future span. Thus, the `Default` and `sharded_slab::Clear`
/// implementations for this type are load-bearing.
#[derive(Debug)]
struct DataInner {
    filter_map: FilterMap,
    metadata: &'static Metadata<'static>,
    parent: Option<Id>,
    ref_count: AtomicUsize,
    // The span's `Extensions` typemap. Allocations for the `HashMap` backing
    // this are pooled and reused in place.
    pub(crate) extensions: RwLock<ExtensionsInner>,
}

// === impl Registry ===

impl Default for Registry {
    fn default() -> Self {
        Self {
            spans: Pool::new(),
            current_spans: ThreadLocal::new(),
            next_filter_id: 0,
        }
    }
}

#[inline]
fn idx_to_id(idx: usize) -> Id {
    Id::from_u64(idx as u64 + 1)
}

#[inline]
fn id_to_idx(id: &Id) -> usize {
    id.into_u64() as usize - 1
}

/// A guard that tracks how many [`Registry`]-backed `Layer`s have
/// processed an `on_close` event.
///
/// This is needed to enable a [`Registry`]-backed Layer to access span
/// data after the `Layer` has recieved the `on_close` callback.
///
/// Once all `Layer`s have processed this event, the [`Registry`] knows
/// that is able to safely remove the span tracked by `id`. `CloseGuard`
/// accomplishes this through a two-step process:
/// 1. Whenever a [`Registry`]-backed `Layer::on_close` method is
///    called, `Registry::start_close` is closed.
///    `Registry::start_close` increments a thread-local `CLOSE_COUNT`
///    by 1 and returns a `CloseGuard`.
/// 2. The `CloseGuard` is dropped at the end of `Layer::on_close`. On
///    drop, `CloseGuard` checks thread-local `CLOSE_COUNT`. If
///    `CLOSE_COUNT` is 0, the `CloseGuard` removes the span with the
///    `id` from the registry, as all `Layers` that might have seen the
///    `on_close` notification have processed it. If `CLOSE_COUNT` is
///    greater than 0, `CloseGuard` decrements the counter by one and
///    _does not_ remove the span from the [`Registry`].
///
/// [`Registry`]: ./struct.Registry.html
pub(crate) struct CloseGuard<'a> {
    id: Id,
    registry: &'a Registry,
    is_closing: bool,
}

impl Registry {
    fn get(&self, id: &Id) -> Option<Ref<'_, DataInner>> {
        self.spans.get(id_to_idx(id))
    }

    /// Returns a guard which tracks how many `Layer`s have
    /// processed an `on_close` notification via the `CLOSE_COUNT` thread-local.
    /// For additional details, see [`CloseGuard`].
    ///
    /// [`CloseGuard`]: ./struct.CloseGuard.html
    pub(crate) fn start_close(&self, id: Id) -> CloseGuard<'_> {
        CLOSE_COUNT.with(|count| {
            let c = count.get();
            count.set(c + 1);
        });
        CloseGuard {
            id,
            registry: self,
            is_closing: false,
        }
    }

    pub(crate) fn has_per_layer_filters(&self) -> bool {
        self.next_filter_id > 0
    }

    pub(crate) fn span_stack(&self) -> cell::Ref<'_, SpanStack> {
        self.current_spans.get_or_default().borrow()
    }
}

thread_local! {
    /// `CLOSE_COUNT` is the thread-local counter used by `CloseGuard` to
    /// track how many layers have processed the close.
    /// For additional details, see [`CloseGuard`].
    ///
    /// [`CloseGuard`]: ./struct.CloseGuard.html
    static CLOSE_COUNT: Cell<usize> = Cell::new(0);
}

impl Subscriber for Registry {
    fn register_callsite(&self, _: &'static Metadata<'static>) -> Interest {
        if self.has_per_layer_filters() {
            return FilterState::take_interest().unwrap_or_else(Interest::always);
        }

        Interest::always()
    }

    fn enabled(&self, _: &Metadata<'_>) -> bool {
        if self.has_per_layer_filters() {
            return FilterState::event_enabled();
        }
        true
    }

    #[inline]
    fn new_span(&self, attrs: &span::Attributes<'_>) -> span::Id {
        let parent = if attrs.is_root() {
            None
        } else if attrs.is_contextual() {
            self.current_span().id().map(|id| self.clone_span(id))
        } else {
            attrs.parent().map(|id| self.clone_span(id))
        };

        let id = self
            .spans
            // Check out a `DataInner` entry from the pool for the new span. If
            // there are free entries already allocated in the pool, this will
            // preferentially reuse one; otherwise, a new `DataInner` is
            // allocated and added to the pool.
            .create_with(|data| {
                data.metadata = attrs.metadata();
                data.parent = parent;
                data.filter_map = crate::filter::FILTERING.with(|filtering| filtering.filter_map());
                #[cfg(debug_assertions)]
                {
                    if data.filter_map != FilterMap::default() {
                        debug_assert!(self.has_per_layer_filters());
                    }
                }

                let refs = data.ref_count.get_mut();
                debug_assert_eq!(*refs, 0);
                *refs = 1;
            })
            .expect("Unable to allocate another span");
        idx_to_id(id)
    }

    /// This is intentionally not implemented, as recording fields
    /// on a span is the responsibility of layers atop of this registry.
    #[inline]
    fn record(&self, _: &span::Id, _: &span::Record<'_>) {}

    fn record_follows_from(&self, _span: &span::Id, _follows: &span::Id) {}

    /// This is intentionally not implemented, as recording events
    /// is the responsibility of layers atop of this registry.
    fn event(&self, _: &Event<'_>) {}

    fn enter(&self, id: &span::Id) {
        if self
            .current_spans
            .get_or_default()
            .borrow_mut()
            .push(id.clone())
        {
            self.clone_span(id);
        }
    }

    fn exit(&self, id: &span::Id) {
        if let Some(spans) = self.current_spans.get() {
            if spans.borrow_mut().pop(id) {
                dispatcher::get_default(|dispatch| dispatch.try_close(id.clone()));
            }
        }
    }

    fn clone_span(&self, id: &span::Id) -> span::Id {
        let span = self
            .get(id)
            .unwrap_or_else(|| panic!(
                "tried to clone {:?}, but no span exists with that ID\n\
                This may be caused by consuming a parent span (`parent: span`) rather than borrowing it (`parent: &span`).",
                id,
            ));
        // Like `std::sync::Arc`, adds to the ref count (on clone) don't require
        // a strong ordering; if we call` clone_span`, the reference count must
        // always at least 1. The only synchronization necessary is between
        // calls to `try_close`: we have to ensure that all threads have
        // dropped their refs to the span before the span is closed.
        let refs = span.ref_count.fetch_add(1, Ordering::Relaxed);
        assert_ne!(
            refs, 0,
            "tried to clone a span ({:?}) that already closed",
            id
        );
        id.clone()
    }

    fn current_span(&self) -> Current {
        self.current_spans
            .get()
            .and_then(|spans| {
                let spans = spans.borrow();
                let id = spans.current()?;
                let span = self.get(id)?;
                Some(Current::new(id.clone(), span.metadata))
            })
            .unwrap_or_else(Current::none)
    }

    /// Decrements the reference count of the span with the given `id`, and
    /// removes the span if it is zero.
    ///
    /// The allocated span slot will be reused when a new span is created.
    fn try_close(&self, id: span::Id) -> bool {
        let span = match self.get(&id) {
            Some(span) => span,
            None if std::thread::panicking() => return false,
            None => panic!("tried to drop a ref to {:?}, but no such span exists!", id),
        };

        let refs = span.ref_count.fetch_sub(1, Ordering::Release);
        if !std::thread::panicking() {
            assert!(refs < std::usize::MAX, "reference count overflow!");
        }
        if refs > 1 {
            return false;
        }

        // Synchronize if we are actually removing the span (stolen
        // from std::Arc); this ensures that all other `try_close` calls on
        // other threads happen-before we actually remove the span.
        fence(Ordering::Acquire);
        true
    }
}

impl<'a> LookupSpan<'a> for Registry {
    type Data = Data<'a>;

    fn span_data(&'a self, id: &Id) -> Option<Self::Data> {
        let inner = self.get(id)?;
        Some(Data { inner })
    }

    fn register_filter(&mut self) -> FilterId {
        let id = FilterId::new(self.next_filter_id);
        self.next_filter_id += 1;
        id
    }
}

// === impl CloseGuard ===

impl<'a> CloseGuard<'a> {
    pub(crate) fn set_closing(&mut self) {
        self.is_closing = true;
    }
}

impl<'a> Drop for CloseGuard<'a> {
    fn drop(&mut self) {
        // If this returns with an error, we are already panicking. At
        // this point, there's nothing we can really do to recover
        // except by avoiding a double-panic.
        let _ = CLOSE_COUNT.try_with(|count| {
            let c = count.get();
            // Decrement the count to indicate that _this_ guard's
            // `on_close` callback has completed.
            //
            // Note that we *must* do this before we actually remove the span
            // from the registry, since dropping the `DataInner` may trigger a
            // new close, if this span is the last reference to a parent span.
            count.set(c - 1);

            // If the current close count is 1, this stack frame is the last
            // `on_close` call. If the span is closing, it's okay to remove the
            // span.
            if c == 1 && self.is_closing {
                self.registry.spans.clear(id_to_idx(&self.id));
            }
        });
    }
}

// === impl Data ===

impl<'a> SpanData<'a> for Data<'a> {
    fn id(&self) -> Id {
        idx_to_id(self.inner.key())
    }

    fn metadata(&self) -> &'static Metadata<'static> {
        (*self).inner.metadata
    }

    fn parent(&self) -> Option<&Id> {
        self.inner.parent.as_ref()
    }

    fn extensions(&self) -> Extensions<'_> {
        Extensions::new(self.inner.extensions.read().expect("Mutex poisoned"))
    }

    fn extensions_mut(&self) -> ExtensionsMut<'_> {
        ExtensionsMut::new(self.inner.extensions.write().expect("Mutex poisoned"))
    }

    #[inline]
    fn is_enabled_for(&self, filter: FilterId) -> bool {
        self.inner.filter_map.is_enabled(filter)
    }
}

// === impl DataInner ===

impl Default for DataInner {
    fn default() -> Self {
        // Since `DataInner` owns a `&'static Callsite` pointer, we need
        // something to use as the initial default value for that callsite.
        // Since we can't access a `DataInner` until it has had actual span data
        // inserted into it, the null metadata will never actually be accessed.
        struct NullCallsite;
        impl tracing_core::callsite::Callsite for NullCallsite {
            fn set_interest(&self, _: Interest) {
                unreachable!(
                    "/!\\ Tried to register the null callsite /!\\\n \
                    This should never have happened and is definitely a bug. \
                    A `tracing` bug report would be appreciated."
                )
            }

            fn metadata(&self) -> &Metadata<'_> {
                unreachable!(
                    "/!\\ Tried to access the null callsite's metadata /!\\\n \
                    This should never have happened and is definitely a bug. \
                    A `tracing` bug report would be appreciated."
                )
            }
        }

        static NULL_CALLSITE: NullCallsite = NullCallsite;
        static NULL_METADATA: Metadata<'static> = tracing_core::metadata! {
            name: "",
            target: "",
            level: tracing_core::Level::TRACE,
            fields: &[],
            callsite: &NULL_CALLSITE,
            kind: tracing_core::metadata::Kind::SPAN,
        };

        Self {
            filter_map: FilterMap::default(),
            metadata: &NULL_METADATA,
            parent: None,
            ref_count: AtomicUsize::new(0),
            extensions: RwLock::new(ExtensionsInner::new()),
        }
    }
}

impl Clear for DataInner {
    /// Clears the span's data in place, dropping the parent's reference count.
    fn clear(&mut self) {
        // A span is not considered closed until all of its children have closed.
        // Therefore, each span's `DataInner` holds a "reference" to the parent
        // span, keeping the parent span open until all its children have closed.
        // When we close a span, we must then decrement the parent's ref count
        // (potentially, allowing it to close, if this child is the last reference
        // to that span).
        // We have to actually unpack the option inside the `get_default`
        // closure, since it is a `FnMut`, but testing that there _is_ a value
        // here lets us avoid the thread-local access if we don't need the
        // dispatcher at all.
        if self.parent.is_some() {
            // Note that --- because `Layered::try_close` works by calling
            // `try_close` on the inner subscriber and using the return value to
            // determine whether to call the `Layer`'s `on_close` callback ---
            // we must call `try_close` on the entire subscriber stack, rather
            // than just on the registry. If the registry called `try_close` on
            // itself directly, the layers wouldn't see the close notification.
            let subscriber = dispatcher::get_default(Dispatch::clone);
            if let Some(parent) = self.parent.take() {
                let _ = subscriber.try_close(parent);
            }
        }

        // Clear (but do not deallocate!) the pooled `HashMap` for the span's extensions.
        self.extensions
            .get_mut()
            .unwrap_or_else(|l| {
                // This function can be called in a `Drop` impl, such as while
                // panicking, so ignore lock poisoning.
                l.into_inner()
            })
            .clear();

        self.filter_map = FilterMap::default();
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use crate::{layer::Context, registry::LookupSpan, Layer};
    use std::{
        collections::HashMap,
        sync::{Arc, Mutex, Weak},
    };
    use tracing::{self, subscriber::with_default};
    use tracing_core::{
        dispatcher,
        span::{Attributes, Id},
        Subscriber,
    };

    #[derive(Debug)]
    struct DoesNothing;
    impl<S: Subscriber> Layer<S> for DoesNothing {}

    struct AssertionLayer;
    impl<S> Layer<S> for AssertionLayer
    where
        S: Subscriber + for<'a> LookupSpan<'a>,
    {
        fn on_close(&self, id: Id, ctx: Context<'_, S>) {
            dbg!(format_args!("closing {:?}", id));
            assert!(&ctx.span(&id).is_some());
        }
    }

    #[test]
    fn single_layer_can_access_closed_span() {
        let subscriber = AssertionLayer.with_subscriber(Registry::default());

        with_default(subscriber, || {
            let span = tracing::debug_span!("span");
            drop(span);
        });
    }

    #[test]
    fn multiple_layers_can_access_closed_span() {
        let subscriber = AssertionLayer
            .and_then(AssertionLayer)
            .with_subscriber(Registry::default());

        with_default(subscriber, || {
            let span = tracing::debug_span!("span");
            drop(span);
        });
    }

    struct CloseLayer {
        inner: Arc<Mutex<CloseState>>,
    }

    struct CloseHandle {
        state: Arc<Mutex<CloseState>>,
    }

    #[derive(Default)]
    struct CloseState {
        open: HashMap<&'static str, Weak<()>>,
        closed: Vec<(&'static str, Weak<()>)>,
    }

    struct SetRemoved(Arc<()>);

    impl<S> Layer<S> for CloseLayer
    where
        S: Subscriber + for<'a> LookupSpan<'a>,
    {
        fn on_new_span(&self, _: &Attributes<'_>, id: &Id, ctx: Context<'_, S>) {
            let span = ctx.span(id).expect("Missing span; this is a bug");
            let mut lock = self.inner.lock().unwrap();
            let is_removed = Arc::new(());
            assert!(
                lock.open
                    .insert(span.name(), Arc::downgrade(&is_removed))
                    .is_none(),
                "test layer saw multiple spans with the same name, the test is probably messed up"
            );
            let mut extensions = span.extensions_mut();
            extensions.insert(SetRemoved(is_removed));
        }

        fn on_close(&self, id: Id, ctx: Context<'_, S>) {
            let span = if let Some(span) = ctx.span(&id) {
                span
            } else {
                println!(
                    "span {:?} did not exist in `on_close`, are we panicking?",
                    id
                );
                return;
            };
            let name = span.name();
            println!("close {} ({:?})", name, id);
            if let Ok(mut lock) = self.inner.lock() {
                if let Some(is_removed) = lock.open.remove(name) {
                    assert!(is_removed.upgrade().is_some());
                    lock.closed.push((name, is_removed));
                }
            }
        }
    }

    impl CloseLayer {
        fn new() -> (Self, CloseHandle) {
            let state = Arc::new(Mutex::new(CloseState::default()));
            (
                Self {
                    inner: state.clone(),
                },
                CloseHandle { state },
            )
        }
    }

    impl CloseState {
        fn is_open(&self, span: &str) -> bool {
            self.open.contains_key(span)
        }

        fn is_closed(&self, span: &str) -> bool {
            self.closed.iter().any(|(name, _)| name == &span)
        }
    }

    impl CloseHandle {
        fn assert_closed(&self, span: &str) {
            let lock = self.state.lock().unwrap();
            assert!(
                lock.is_closed(span),
                "expected {} to be closed{}",
                span,
                if lock.is_open(span) {
                    " (it was still open)"
                } else {
                    ", but it never existed (is there a problem with the test?)"
                }
            )
        }

        fn assert_open(&self, span: &str) {
            let lock = self.state.lock().unwrap();
            assert!(
                lock.is_open(span),
                "expected {} to be open{}",
                span,
                if lock.is_closed(span) {
                    " (it was still open)"
                } else {
                    ", but it never existed (is there a problem with the test?)"
                }
            )
        }

        fn assert_removed(&self, span: &str) {
            let lock = self.state.lock().unwrap();
            let is_removed = match lock.closed.iter().find(|(name, _)| name == &span) {
                Some((_, is_removed)) => is_removed,
                None => panic!(
                    "expected {} to be removed from the registry, but it was not closed {}",
                    span,
                    if lock.is_closed(span) {
                        " (it was still open)"
                    } else {
                        ", but it never existed (is there a problem with the test?)"
                    }
                ),
            };
            assert!(
                is_removed.upgrade().is_none(),
                "expected {} to have been removed from the registry",
                span
            )
        }

        fn assert_not_removed(&self, span: &str) {
            let lock = self.state.lock().unwrap();
            let is_removed = match lock.closed.iter().find(|(name, _)| name == &span) {
                Some((_, is_removed)) => is_removed,
                None if lock.is_open(span) => return,
                None => unreachable!(),
            };
            assert!(
                is_removed.upgrade().is_some(),
                "expected {} to have been removed from the registry",
                span
            )
        }

        #[allow(unused)] // may want this for future tests
        fn assert_last_closed(&self, span: Option<&str>) {
            let lock = self.state.lock().unwrap();
            let last = lock.closed.last().map(|(span, _)| span);
            assert_eq!(
                last,
                span.as_ref(),
                "expected {:?} to have closed last",
                span
            );
        }

        fn assert_closed_in_order(&self, order: impl AsRef<[&'static str]>) {
            let lock = self.state.lock().unwrap();
            let order = order.as_ref();
            for (i, name) in order.iter().enumerate() {
                assert_eq!(
                    lock.closed.get(i).map(|(span, _)| span),
                    Some(name),
                    "expected close order: {:?}, actual: {:?}",
                    order,
                    lock.closed.iter().map(|(name, _)| name).collect::<Vec<_>>()
                );
            }
        }
    }

    #[test]
    fn spans_are_removed_from_registry() {
        let (close_layer, state) = CloseLayer::new();
        let subscriber = AssertionLayer
            .and_then(close_layer)
            .with_subscriber(Registry::default());

        // Create a `Dispatch` (which is internally reference counted) so that
        // the subscriber lives to the end of the test. Otherwise, if we just
        // passed the subscriber itself to `with_default`, we could see the span
        // be dropped when the subscriber itself is dropped, destroying the
        // registry.
        let dispatch = dispatcher::Dispatch::new(subscriber);

        dispatcher::with_default(&dispatch, || {
            let span = tracing::debug_span!("span1");
            drop(span);
            let span = tracing::info_span!("span2");
            drop(span);
        });

        state.assert_removed("span1");
        state.assert_removed("span2");

        // Ensure the registry itself outlives the span.
        drop(dispatch);
    }

    #[test]
    fn spans_are_only_closed_when_the_last_ref_drops() {
        let (close_layer, state) = CloseLayer::new();
        let subscriber = AssertionLayer
            .and_then(close_layer)
            .with_subscriber(Registry::default());

        // Create a `Dispatch` (which is internally reference counted) so that
        // the subscriber lives to the end of the test. Otherwise, if we just
        // passed the subscriber itself to `with_default`, we could see the span
        // be dropped when the subscriber itself is dropped, destroying the
        // registry.
        let dispatch = dispatcher::Dispatch::new(subscriber);

        let span2 = dispatcher::with_default(&dispatch, || {
            let span = tracing::debug_span!("span1");
            drop(span);
            let span2 = tracing::info_span!("span2");
            let span2_clone = span2.clone();
            drop(span2);
            span2_clone
        });

        state.assert_removed("span1");
        state.assert_not_removed("span2");

        drop(span2);
        state.assert_removed("span1");

        // Ensure the registry itself outlives the span.
        drop(dispatch);
    }

    #[test]
    fn span_enter_guards_are_dropped_out_of_order() {
        let (close_layer, state) = CloseLayer::new();
        let subscriber = AssertionLayer
            .and_then(close_layer)
            .with_subscriber(Registry::default());

        // Create a `Dispatch` (which is internally reference counted) so that
        // the subscriber lives to the end of the test. Otherwise, if we just
        // passed the subscriber itself to `with_default`, we could see the span
        // be dropped when the subscriber itself is dropped, destroying the
        // registry.
        let dispatch = dispatcher::Dispatch::new(subscriber);

        dispatcher::with_default(&dispatch, || {
            let span1 = tracing::debug_span!("span1");
            let span2 = tracing::info_span!("span2");

            let enter1 = span1.enter();
            let enter2 = span2.enter();

            drop(enter1);
            drop(span1);

            state.assert_removed("span1");
            state.assert_not_removed("span2");

            drop(enter2);
            state.assert_not_removed("span2");

            drop(span2);
            state.assert_removed("span1");
            state.assert_removed("span2");
        });
    }

    #[test]
    fn child_closes_parent() {
        // This test asserts that if a parent span's handle is dropped before
        // a child span's handle, the parent will remain open until child
        // closes, and will then be closed.

        let (close_layer, state) = CloseLayer::new();
        let subscriber = close_layer.with_subscriber(Registry::default());

        let dispatch = dispatcher::Dispatch::new(subscriber);

        dispatcher::with_default(&dispatch, || {
            let span1 = tracing::info_span!("parent");
            let span2 = tracing::info_span!(parent: &span1, "child");

            state.assert_open("parent");
            state.assert_open("child");

            drop(span1);
            state.assert_open("parent");
            state.assert_open("child");

            drop(span2);
            state.assert_closed("parent");
            state.assert_closed("child");
        });
    }

    #[test]
    fn child_closes_grandparent() {
        // This test asserts that, when a span is kept open by a child which
        // is *itself* kept open by a child, closing the grandchild will close
        // both the parent *and* the grandparent.
        let (close_layer, state) = CloseLayer::new();
        let subscriber = close_layer.with_subscriber(Registry::default());

        let dispatch = dispatcher::Dispatch::new(subscriber);

        dispatcher::with_default(&dispatch, || {
            let span1 = tracing::info_span!("grandparent");
            let span2 = tracing::info_span!(parent: &span1, "parent");
            let span3 = tracing::info_span!(parent: &span2, "child");

            state.assert_open("grandparent");
            state.assert_open("parent");
            state.assert_open("child");

            drop(span1);
            drop(span2);
            state.assert_open("grandparent");
            state.assert_open("parent");
            state.assert_open("child");

            drop(span3);

            state.assert_closed_in_order(&["child", "parent", "grandparent"]);
        });
    }
}