1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
//! Wasmtime's embedding API
//!
//! Wasmtime is a WebAssembly engine for JIT-complied or ahead-of-time compiled
//! WebAssembly modules. More information about the Wasmtime project as a whole
//! can be found [in the documentation book](https://docs.wasmtime.dev) whereas
//! this documentation mostly focuses on the API reference of the `wasmtime`
//! crate itself.
//!
//! This crate contains an API used to interact with WebAssembly modules. For
//! example you can compile modules, instantiate them, call them, etc. As an
//! embedder of WebAssembly you can also provide WebAssembly modules
//! functionality from the host by creating host-defined functions, memories,
//! globals, etc, which can do things that WebAssembly cannot (such as print to
//! the screen).
//!
//! The `wasmtime` crate has similar concepts to the
//! the [JS WebAssembly
//! API](https://developer.mozilla.org/en-US/docs/WebAssembly) as well as the
//! [proposed C API](https://github.com/webassembly/wasm-c-api), but the Rust
//! API is designed for efficiency, ergonomics, and expressivity in Rust. As
//! with all other Rust code you're guaranteed that programs will be safe (not
//! have undefined behavior or segfault) so long as you don't use `unsafe` in
//! your own program. With `wasmtime` you can easily and conveniently embed a
//! WebAssembly runtime with confidence that the WebAssembly is safely
//! sandboxed.
//!
//! An example of using Wasmtime looks like:
//!
//! ```
//! use anyhow::Result;
//! use wasmtime::*;
//!
//! fn main() -> Result<()> {
//!     // Modules can be compiled through either the text or binary format
//!     let engine = Engine::default();
//!     let wat = r#"
//!         (module
//!             (import "host" "hello" (func $host_hello (param i32)))
//!
//!             (func (export "hello")
//!                 i32.const 3
//!                 call $host_hello)
//!         )
//!     "#;
//!     let module = Module::new(&engine, wat)?;
//!
//!     // All wasm objects operate within the context of a "store". Each
//!     // `Store` has a type parameter to store host-specific data, which in
//!     // this case we're using `4` for.
//!     let mut store = Store::new(&engine, 4);
//!     let host_hello = Func::wrap(&mut store, |caller: Caller<'_, u32>, param: i32| {
//!         println!("Got {} from WebAssembly", param);
//!         println!("my host state is: {}", caller.data());
//!     });
//!
//!     // Instantiation of a module requires specifying its imports and then
//!     // afterwards we can fetch exports by name, as well as asserting the
//!     // type signature of the function with `get_typed_func`.
//!     let instance = Instance::new(&mut store, &module, &[host_hello.into()])?;
//!     let hello = instance.get_typed_func::<(), (), _>(&mut store, "hello")?;
//!
//!     // And finally we can call the wasm!
//!     hello.call(&mut store, ())?;
//!
//!     Ok(())
//! }
//! ```
//!
//! ## Core Concepts
//!
//! There are a number of core types and concepts that are important to be aware
//! of when using the `wasmtime` crate:
//!
//! * [`Engine`] - a global compilation environment for WebAssembly. An
//!   [`Engine`] is an object that can be shared concurrently across threads and
//!   is created with a [`Config`] to tweak various settings. Compilation of any
//!   WebAssembly requires first configuring and creating an [`Engine`].
//!
//! * [`Module`] - a compiled WebAssembly module. This structure represents
//!   in-memory JIT code which is ready to execute after being instantiated.
//!   It's often important to cache instances of a [`Module`] because creation
//!   (compilation) can be expensive. Note that [`Module`] is safe to share
//!   across threads, and can be created from a WebAssembly binary and an
//!   [`Engine`] with [`Module::new`]. Caching can either happen with
//!   [`Engine::precompile_module`] or [`Module::serialize`], feeding those
//!   bytes back into [`Module::deserialize`].
//!
//! * [`Store`] - container for all information related to WebAssembly objects
//!   such as functions, instances, memories, etc. A [`Store<T>`][`Store`]
//!   allows customization of the `T` to store arbitrary host data within a
//!   [`Store`]. This host data can be accessed through host functions via the
//!   [`Caller`] function parameter in host-defined functions. A [`Store`] is
//!   required for all WebAssembly operations, such as calling a wasm function.
//!   The [`Store`] is passed in as a "context" to methods like [`Func::call`].
//!   Dropping a [`Store`] will deallocate all memory associated with
//!   WebAssembly objects within the [`Store`].
//!
//! * [`Instance`] - an instantiated WebAssembly module. An instance is where
//!   you can actually acquire a [`Func`] from, for example, to call.
//!
//! * [`Func`] - a WebAssembly (or host) function. This can be acquired as the
//!   export of an [`Instance`] to call WebAssembly functions, or it can be
//!   created via functions like [`Func::wrap`] to wrap host-defined
//!   functionality and give it to WebAssembly.
//!
//! * [`Table`], [`Global`], [`Memory`] - other WebAssembly objects which can
//!   either be defined on the host or in wasm itself (via instances). These all
//!   have various ways of being interacted with like [`Func`].
//!
//! All "store-connected" types such as [`Func`], [`Memory`], etc, require the
//! store to be passed in as a context to each method. Methods in wasmtime
//! frequently have their first parameter as either [`impl
//! AsContext`][`AsContext`] or [`impl AsContextMut`][`AsContextMut`]. These
//! traits are implemented for a variety of types, allowing you to, for example,
//! pass the following types into methods:
//!
//! * `&Store<T>`
//! * `&mut Store<T>`
//! * `&Caller<'_, T>`
//! * `&mut Caller<'_, T>`
//! * `StoreContext<'_, T>`
//! * `StoreContextMut<'_, T>`
//!
//! A [`Store`] is the sole owner of all WebAssembly internals. Types like
//! [`Func`] point within the [`Store`] and require the [`Store`] to be provided
//! to actually access the internals of the WebAssembly function, for instance.
//!
//! ## Linking
//!
//! WebAssembly modules almost always require functionality from the host to
//! perform I/O-like tasks. They might refer to quite a few pieces of host
//! functionality, WASI, or maybe even a number of other wasm modules. To assist
//! with managing this a [`Linker`] type is provided to instantiate modules.
//!
//! A [`Linker`] performs name-based resolution of the imports of a WebAssembly
//! module so the [`Linker::instantiate`] method does not take an `imports`
//! argument like [`Instance::new`] does. Methods like [`Linker::define`] or
//! [`Linker::func_wrap`] can be used to define names within a [`Linker`] to
//! later be used for instantiation.
//!
//! For example we can reimplement the above example with a `Linker`:
//!
//! ```
//! use anyhow::Result;
//! use wasmtime::*;
//!
//! fn main() -> Result<()> {
//!     let engine = Engine::default();
//!     let wat = r#"
//!         (module
//!             (import "host" "hello" (func $host_hello (param i32)))
//!
//!             (func (export "hello")
//!                 i32.const 3
//!                 call $host_hello)
//!         )
//!     "#;
//!     let module = Module::new(&engine, wat)?;
//!
//!     // Create a `Linker` and define our host function in it:
//!     let mut linker = Linker::new(&engine);
//!     linker.func_wrap("host", "hello", |caller: Caller<'_, u32>, param: i32| {
//!         println!("Got {} from WebAssembly", param);
//!         println!("my host state is: {}", caller.data());
//!     })?;
//!
//!     // Use the `linker` to instantiate the module, which will automatically
//!     // resolve the imports of the module using name-based resolution.
//!     let mut store = Store::new(&engine, 0);
//!     let instance = linker.instantiate(&mut store, &module)?;
//!     let hello = instance.get_typed_func::<(), (), _>(&mut store, "hello")?;
//!     hello.call(&mut store, ())?;
//!
//!     Ok(())
//! }
//! ```
//!
//! The [`Linker`] type also transparently handles Commands and Reactors
//! as defined by WASI.
//!
//! ## Example Architecture
//!
//! To better understand how Wasmtime types interact with each other let's walk
//! through, at a high-level, an example of how you might use WebAssembly. In
//! our use case let's say we have a web server where we'd like to run some
//! custom WebAssembly on each request. To ensure requests are entirely isolated
//! from each other, though, we'll be creating a new [`Store`] for each
//! request.
//!
//! When the server starts, we'll start off by creating an [`Engine`] (and maybe
//! tweaking [`Config`] settings if necessary). This [`Engine`] will be the only
//! engine for the lifetime of the server itself. Next, we can compile our
//! WebAssembly. You'd create a [`Module`] through the [`Module::new`] API.
//! This will generate JIT code and perform expensive compilation tasks
//! up-front. Finally the last step of initialization would be to create a
//! [`Linker`] which will later be used to instantiate modules, adding
//! functionality like WASI to the linker too.
//!
//! After that setup, the server starts up as usual and is ready to receive
//! requests. Upon receiving a request you'd then create a [`Store`] with
//! [`Store::new`] referring to the original [`Engine`]. Using your [`Module`]
//! and [`Linker`] from before you'd then call [`Linker::instantiate`] to
//! instantiate our module for the request. Both of these operations are
//! designed to be as cheap as possible.
//!
//! With an [`Instance`] you can then invoke various exports and interact with
//! the WebAssembly module. Once the request is finished, the [`Store`]
//! is dropped and everything will be deallocated. Note that if the same
//! [`Store`] were used for every request then that would have all requests
//! sharing resources and nothing would ever get deallocated, causing memory
//! usage to baloon and would achive less isolation between requests.
//!
//! ## WASI
//!
//! The `wasmtime` crate does not natively provide support for WASI, but you can
//! use the [`wasmtime-wasi`] crate for that purpose. With [`wasmtime-wasi`] all
//! WASI functions can be added to a [`Linker`] and then used to instantiate
//! WASI-using modules. For more information see the [WASI example in the
//! documentation](https://docs.wasmtime.dev/examples-rust-wasi.html).
//!
//! [`wasmtime-wasi`]: https://crates.io/crates/wasmtime-wasi
//!
//! ## Cross-store usage of items
//!
//! In `wasmtime` wasm items such as [`Global`] and [`Memory`] "belong" to a
//! [`Store`]. The store they belong to is the one they were created with
//! (passed in as a parameter) or instantiated with. This store is the only
//! store that can be used to interact with wasm items after they're created.
//!
//! The `wasmtime` crate will panic if the [`Store`] argument passed in to these
//! operations is incorrect. In other words it's considered a programmer error
//! rather than a recoverable error for the wrong [`Store`] to be used when
//! calling APIs.
//!
//! ## Crate Features
//!
//! The `wasmtime` crate comes with a number of compile-time features that can
//! be used to customize what features it supports. Some of these features are
//! just internal details, but some affect the public API of the `wasmtime`
//! crate. Be sure to check the API you're using to see if any crate features
//! are enabled.
//!
//! * `cranelift` - Enabled by default, this features enables using Cranelift at
//!   runtime to compile a WebAssembly module to native code. This feature is
//!   required to process and compile new WebAssembly modules. If this feature
//!   is disabled then the only way to create a [`Module`] is to use the
//!   [`Module::deserialize`] function with a precompiled artifact (typically
//!   compiled with the same version of Wasmtime, just somewhere else).
//!
//! * `cache` - Enabled by default, this feature adds support for wasmtime to
//!   perform internal caching of modules in a global location. This must still
//!   be enabled explicitly through [`Config::cache_config_load`] or
//!   [`Config::cache_config_load_default`].
//!
//! * `wat` - Enabled by default, this feature adds support for accepting the
//!   text format of WebAssembly in [`Module::new`]. The text format will be
//!   automatically recognized and translated to binary when compiling a
//!   module.
//!
//! * `parallel-compilation` - Enabled by default, this feature enables support
//!   for compiling functions of a module in parallel with `rayon`.
//!
//! * `async` - Enabled by default, this feature enables APIs and runtime
//!   support for defining asynchronous host functions and calling WebAssembly
//!   asynchronously.
//!
//! * `jitdump` - Enabled by default, this feature compiles in support for the
//!   jitdump runtime profiling format. The profiler can be selected with
//!   [`Config::profiler`].
//!
//! * `vtune` - Enabled by default, this feature compiles in support for VTune
//!   profiling of JIT code.
//!
//! * `all-arch` - Not enabled by default. This feature compiles in support for
//!   all architectures for both the JIT compiler and the `wasmtime compile` CLI
//!   command.
//!
//! * `pooling-allocator` - Enabled by default, this feature adds support for
//!   the pooling allocation strategy enabled via
//!   [`Config::allocation_strategy`]. The pooling allocator can enable more
//!   efficient reuse of resources for high-concurrency and
//!   high-instantiation-count scenarios.
//!
//! * `memory-init-cow` - Enabled by default, this feature builds in support
//!   for, on supported platforms, initializing wasm linear memories with
//!   copy-on-write heap mappings. This makes instantiation much faster by
//!   `mmap`-ing the initial memory image into place instead of copying memory
//!   into place, allowing sharing pages that end up only getting read. Note
//!   that this is simply compile-time support and this must also be enabled at
//!   run-time via [`Config::memory_init_cow`] (which is also enabled by
//!   default).
//!
//! ## Examples
//!
//! In addition to the examples below be sure to check out the [online embedding
//! documentation][rustdocs] as well as the [online list of examples][examples]
//!
//! [rustdocs]: https://bytecodealliance.github.io/wasmtime/lang-rust.html
//! [examples]: https://bytecodealliance.github.io/wasmtime/examples-rust-embed.html
//!
//! An example of using WASI looks like:
//!
//! ```no_run
//! # use anyhow::Result;
//! # use wasmtime::*;
//! use wasmtime_wasi::sync::WasiCtxBuilder;
//!
//! # fn main() -> Result<()> {
//! // Compile our module and create a `Linker` which has WASI functions defined
//! // within it.
//! let engine = Engine::default();
//! let module = Module::from_file(&engine, "foo.wasm")?;
//! let mut linker = Linker::new(&engine);
//! wasmtime_wasi::add_to_linker(&mut linker, |cx| cx)?;
//!
//! // Configure and create a `WasiCtx`, which WASI functions need access to
//! // through the host state of the store (which in this case is the host state
//! // of the store)
//! let wasi_ctx = WasiCtxBuilder::new().inherit_stdio().build();
//! let mut store = Store::new(&engine, wasi_ctx);
//!
//! // Instantiate our module with the imports we've created, and run it.
//! let instance = linker.instantiate(&mut store, &module)?;
//! // ...
//!
//! # Ok(())
//! # }
//! ```
//!
//! An example of reading a string from a wasm module:
//!
//! ```
//! use std::str;
//!
//! # use wasmtime::*;
//! # fn main() -> anyhow::Result<()> {
//! let mut store = Store::default();
//! let log_str = Func::wrap(&mut store, |mut caller: Caller<'_, ()>, ptr: i32, len: i32| {
//!     // Use our `caller` context to learn about the memory export of the
//!     // module which called this host function.
//!     let mem = match caller.get_export("memory") {
//!         Some(Extern::Memory(mem)) => mem,
//!         _ => return Err(Trap::new("failed to find host memory")),
//!     };
//!
//!     // Use the `ptr` and `len` values to get a subslice of the wasm-memory
//!     // which we'll attempt to interpret as utf-8.
//!     let data = mem.data(&caller)
//!         .get(ptr as u32 as usize..)
//!         .and_then(|arr| arr.get(..len as u32 as usize));
//!     let string = match data {
//!         Some(data) => match str::from_utf8(data) {
//!             Ok(s) => s,
//!             Err(_) => return Err(Trap::new("invalid utf-8")),
//!         },
//!         None => return Err(Trap::new("pointer/length out of bounds")),
//!     };
//!     assert_eq!(string, "Hello, world!");
//!     println!("{}", string);
//!     Ok(())
//! });
//! let module = Module::new(
//!     store.engine(),
//!     r#"
//!         (module
//!             (import "" "" (func $log_str (param i32 i32)))
//!             (func (export "foo")
//!                 i32.const 4   ;; ptr
//!                 i32.const 13  ;; len
//!                 call $log_str)
//!             (memory (export "memory") 1)
//!             (data (i32.const 4) "Hello, world!"))
//!     "#,
//! )?;
//! let instance = Instance::new(&mut store, &module, &[log_str.into()])?;
//! let foo = instance.get_typed_func::<(), (), _>(&mut store, "foo")?;
//! foo.call(&mut store, ())?;
//! # Ok(())
//! # }
//! ```

#![allow(unknown_lints)]
#![deny(missing_docs, rustdoc::broken_intra_doc_links)]
#![doc(test(attr(deny(warnings))))]
#![doc(test(attr(allow(dead_code, unused_variables, unused_mut))))]
#![cfg_attr(nightlydoc, feature(doc_cfg))]
#![cfg_attr(not(feature = "default"), allow(dead_code, unused_imports))]

#[macro_use]
mod func;

mod config;
mod engine;
mod externals;
mod instance;
mod limits;
mod linker;
mod memory;
mod module;
mod r#ref;
mod signatures;
mod store;
mod trampoline;
mod trap;
mod types;
mod values;

pub use crate::config::*;
pub use crate::engine::*;
pub use crate::externals::*;
pub use crate::func::*;
pub use crate::instance::{Instance, InstancePre};
pub use crate::limits::*;
pub use crate::linker::*;
pub use crate::memory::*;
pub use crate::module::Module;
pub use crate::r#ref::ExternRef;
#[cfg(feature = "async")]
pub use crate::store::CallHookHandler;
pub use crate::store::{AsContext, AsContextMut, CallHook, Store, StoreContext, StoreContextMut};
pub use crate::trap::*;
pub use crate::types::*;
pub use crate::values::*;

#[cfg(feature = "component-model")]
pub mod component;

cfg_if::cfg_if! {
    if #[cfg(all(target_os = "macos", not(feature = "posix-signals-on-macos")))] {
        // no extensions for macOS at this time
    } else if #[cfg(unix)] {
        pub mod unix;
    } else if #[cfg(windows)] {
        pub mod windows;
    } else {
        // ... unknown os!
    }
}

fn _assert_send_sync() {
    fn _assert<T: Send + Sync>() {}
    fn _assert_send<T: Send>(_t: T) {}
    _assert::<Engine>();
    _assert::<Config>();
    _assert::<(Func, TypedFunc<(), ()>, Global, Table, Memory)>();
    _assert::<Instance>();
    _assert::<Module>();
    _assert::<Store<()>>();
    _assert::<StoreContext<'_, ()>>();
    _assert::<StoreContextMut<'_, ()>>();
    _assert::<Caller<'_, ()>>();
    _assert::<Linker<()>>();
    _assert::<Linker<*mut u8>>();
    _assert::<ExternRef>();
    _assert::<InstancePre<()>>();
    _assert::<InstancePre<*mut u8>>();

    #[cfg(feature = "async")]
    fn _call_async(s: &mut Store<()>, f: Func) {
        _assert_send(f.call_async(&mut *s, &[], &mut []))
    }
    #[cfg(feature = "async")]
    fn _typed_call_async(s: &mut Store<()>, f: TypedFunc<(), ()>) {
        _assert_send(f.call_async(&mut *s, ()))
    }
    #[cfg(feature = "async")]
    fn _instantiate_async(s: &mut Store<()>, m: &Module) {
        _assert_send(Instance::new_async(s, m, &[]))
    }
}