1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
//! Implements the pooling instance allocator.
//!
//! The pooling instance allocator maps memory in advance
//! and allocates instances, memories, tables, and stacks from
//! a pool of available resources.
//!
//! Using the pooling instance allocator can speed up module instantiation
//! when modules can be constrained based on configurable limits.

use super::{
    initialize_instance, InstanceAllocationRequest, InstanceAllocator, InstanceHandle,
    InstantiationError,
};
use crate::{instance::Instance, Memory, Mmap, Table};
use crate::{MemoryImageSlot, ModuleRuntimeInfo, Store};
use anyhow::{anyhow, bail, Context, Result};
use libc::c_void;
use std::convert::TryFrom;
use std::mem;
use std::sync::Mutex;
use wasmtime_environ::{
    DefinedMemoryIndex, DefinedTableIndex, HostPtr, Module, PrimaryMap, Tunables, VMOffsets,
    WASM_PAGE_SIZE,
};

mod index_allocator;
use index_allocator::{PoolingAllocationState, SlotId};

cfg_if::cfg_if! {
    if #[cfg(windows)] {
        mod windows;
        use windows as imp;
    } else {
        mod unix;
        use unix as imp;
    }
}

use imp::{commit_memory_pages, commit_table_pages, decommit_memory_pages, decommit_table_pages};

#[cfg(all(feature = "async", unix))]
use imp::{commit_stack_pages, reset_stack_pages_to_zero};

#[cfg(feature = "async")]
use super::FiberStackError;

fn round_up_to_pow2(n: usize, to: usize) -> usize {
    debug_assert!(to > 0);
    debug_assert!(to.is_power_of_two());
    (n + to - 1) & !(to - 1)
}

/// Represents the limits placed on instances by the pooling instance allocator.
#[derive(Debug, Copy, Clone)]
pub struct InstanceLimits {
    /// The maximum number of concurrent instances supported (default is 1000).
    ///
    /// This value has a direct impact on the amount of memory allocated by the pooling
    /// instance allocator.
    ///
    /// The pooling instance allocator allocates three memory pools with sizes depending on this value:
    ///
    /// * An instance pool, where each entry in the pool can store the runtime representation
    ///   of an instance, including a maximal `VMContext` structure.
    ///
    /// * A memory pool, where each entry in the pool contains the reserved address space for each
    ///   linear memory supported by an instance.
    ///
    /// * A table pool, where each entry in the pool contains the space needed for each WebAssembly table
    ///   supported by an instance (see `table_elements` to control the size of each table).
    ///
    /// Additionally, this value will also control the maximum number of execution stacks allowed for
    /// asynchronous execution (one per instance), when enabled.
    ///
    /// The memory pool will reserve a large quantity of host process address space to elide the bounds
    /// checks required for correct WebAssembly memory semantics. Even for 64-bit address spaces, the
    /// address space is limited when dealing with a large number of supported instances.
    ///
    /// For example, on Linux x86_64, the userland address space limit is 128 TiB. That might seem like a lot,
    /// but each linear memory will *reserve* 6 GiB of space by default. Multiply that by the number of linear
    /// memories each instance supports and then by the number of supported instances and it becomes apparent
    /// that address space can be exhausted depending on the number of supported instances.
    pub count: u32,

    /// The maximum size, in bytes, allocated for an instance and its
    /// `VMContext`.
    ///
    /// This amount of space is pre-allocated for `count` number of instances
    /// and is used to store the runtime `wasmtime_runtime::Instance` structure
    /// along with its adjacent `VMContext` structure. The `Instance` type has a
    /// static size but `VMContext` is dynamically sized depending on the module
    /// being instantiated. This size limit loosely correlates to the size of
    /// the wasm module, taking into account factors such as:
    ///
    /// * number of functions
    /// * number of globals
    /// * number of memories
    /// * number of tables
    /// * number of function types
    ///
    /// If the allocated size per instance is too small then instantiation of a
    /// module will fail at runtime with an error indicating how many bytes were
    /// needed. This amount of bytes are committed to memory per-instance when
    /// a pooling allocator is created.
    ///
    /// The default value for this is 1MB.
    pub size: usize,

    /// The maximum number of defined tables for a module (default is 1).
    ///
    /// This value controls the capacity of the `VMTableDefinition` table in each instance's
    /// `VMContext` structure.
    ///
    /// The allocated size of the table will be `tables * sizeof(VMTableDefinition)` for each
    /// instance regardless of how many tables are defined by an instance's module.
    pub tables: u32,

    /// The maximum table elements for any table defined in a module (default is 10000).
    ///
    /// If a table's minimum element limit is greater than this value, the module will
    /// fail to instantiate.
    ///
    /// If a table's maximum element limit is unbounded or greater than this value,
    /// the maximum will be `table_elements` for the purpose of any `table.grow` instruction.
    ///
    /// This value is used to reserve the maximum space for each supported table; table elements
    /// are pointer-sized in the Wasmtime runtime.  Therefore, the space reserved for each instance
    /// is `tables * table_elements * sizeof::<*const ()>`.
    pub table_elements: u32,

    /// The maximum number of defined linear memories for a module (default is 1).
    ///
    /// This value controls the capacity of the `VMMemoryDefinition` table in each instance's
    /// `VMContext` structure.
    ///
    /// The allocated size of the table will be `memories * sizeof(VMMemoryDefinition)` for each
    /// instance regardless of how many memories are defined by an instance's module.
    pub memories: u32,

    /// The maximum number of pages for any linear memory defined in a module (default is 160).
    ///
    /// The default of 160 means at most 10 MiB of host memory may be committed for each instance.
    ///
    /// If a memory's minimum page limit is greater than this value, the module will
    /// fail to instantiate.
    ///
    /// If a memory's maximum page limit is unbounded or greater than this value,
    /// the maximum will be `memory_pages` for the purpose of any `memory.grow` instruction.
    ///
    /// This value is used to control the maximum accessible space for each linear memory of an instance.
    ///
    /// The reservation size of each linear memory is controlled by the
    /// `static_memory_maximum_size` setting and this value cannot
    /// exceed the configured static memory maximum size.
    pub memory_pages: u64,
}

impl Default for InstanceLimits {
    fn default() -> Self {
        // See doc comments for `wasmtime::InstanceLimits` for these default values
        Self {
            count: 1000,
            size: 1 << 20, // 1 MB
            tables: 1,
            table_elements: 10_000,
            memories: 1,
            memory_pages: 160,
        }
    }
}

/// The allocation strategy to use for the pooling instance allocator.
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
pub enum PoolingAllocationStrategy {
    /// Allocate from the next available instance.
    NextAvailable,
    /// Allocate from a random available instance.
    Random,
    /// Try to allocate an instance slot that was previously used for
    /// the same module, potentially enabling faster instantiation by
    /// reusing e.g. memory mappings.
    ReuseAffinity,
}

impl Default for PoolingAllocationStrategy {
    fn default() -> Self {
        if cfg!(memory_init_cow) {
            Self::ReuseAffinity
        } else {
            Self::NextAvailable
        }
    }
}

/// Represents a pool of maximal `Instance` structures.
///
/// Each index in the pool provides enough space for a maximal `Instance`
/// structure depending on the limits used to create the pool.
///
/// The pool maintains a free list for fast instance allocation.
#[derive(Debug)]
struct InstancePool {
    mapping: Mmap,
    instance_size: usize,
    max_instances: usize,
    index_allocator: Mutex<PoolingAllocationState>,
    memories: MemoryPool,
    tables: TablePool,
}

impl InstancePool {
    fn new(
        strategy: PoolingAllocationStrategy,
        instance_limits: &InstanceLimits,
        tunables: &Tunables,
    ) -> Result<Self> {
        let page_size = crate::page_size();

        let instance_size = round_up_to_pow2(instance_limits.size, mem::align_of::<Instance>());

        let max_instances = instance_limits.count as usize;

        let allocation_size = round_up_to_pow2(
            instance_size
                .checked_mul(max_instances)
                .ok_or_else(|| anyhow!("total size of instance data exceeds addressable memory"))?,
            page_size,
        );

        let mapping = Mmap::accessible_reserved(allocation_size, allocation_size)
            .context("failed to create instance pool mapping")?;

        let pool = Self {
            mapping,
            instance_size,
            max_instances,
            index_allocator: Mutex::new(PoolingAllocationState::new(strategy, max_instances)),
            memories: MemoryPool::new(instance_limits, tunables)?,
            tables: TablePool::new(instance_limits)?,
        };

        Ok(pool)
    }

    unsafe fn instance(&self, index: usize) -> &mut Instance {
        assert!(index < self.max_instances);
        &mut *(self.mapping.as_mut_ptr().add(index * self.instance_size) as *mut Instance)
    }

    unsafe fn initialize_instance(
        &self,
        instance_index: usize,
        req: InstanceAllocationRequest,
    ) -> Result<InstanceHandle, InstantiationError> {
        let module = req.runtime_info.module();

        // Before doing anything else ensure that our instance slot is actually
        // big enough to hold the `Instance` and `VMContext` for this instance.
        // If this fails then it's a configuration error at the `Engine` level
        // from when this pooling allocator was created and that needs updating
        // if this is to succeed.
        let offsets = self
            .validate_instance_size(module)
            .map_err(InstantiationError::Resource)?;

        let mut memories =
            PrimaryMap::with_capacity(module.memory_plans.len() - module.num_imported_memories);
        let mut tables =
            PrimaryMap::with_capacity(module.table_plans.len() - module.num_imported_tables);

        // If we fail to allocate the instance's resources, deallocate
        // what was successfully allocated and return before initializing the instance
        if let Err(e) = self.allocate_instance_resources(
            instance_index,
            req.runtime_info.as_ref(),
            req.store.as_raw(),
            &mut memories,
            &mut tables,
        ) {
            self.deallocate_memories(instance_index, &mut memories);
            self.deallocate_tables(instance_index, &mut tables);
            return Err(e);
        }

        let instance_ptr = self.instance(instance_index) as _;

        Instance::new_at(
            instance_ptr,
            self.instance_size,
            offsets,
            req,
            memories,
            tables,
        );

        Ok(InstanceHandle {
            instance: instance_ptr,
        })
    }

    fn allocate(
        &self,
        req: InstanceAllocationRequest,
    ) -> Result<InstanceHandle, InstantiationError> {
        let index = {
            let mut alloc = self.index_allocator.lock().unwrap();
            if alloc.is_empty() {
                return Err(InstantiationError::Limit(self.max_instances as u32));
            }
            alloc.alloc(req.runtime_info.unique_id()).index()
        };

        match unsafe { self.initialize_instance(index, req) } {
            Ok(handle) => Ok(handle),
            Err(e) => {
                // If we failed to initialize the instance, there's no need to drop
                // it as it was never "allocated", but we still need to free the
                // instance's slot.
                self.index_allocator.lock().unwrap().free(SlotId(index));
                Err(e)
            }
        }
    }

    fn deallocate(&self, handle: &InstanceHandle) {
        let addr = handle.instance as usize;
        let base = self.mapping.as_ptr() as usize;

        assert!(addr >= base && addr < base + self.mapping.len());
        assert!((addr - base) % self.instance_size == 0);

        let index = (addr - base) / self.instance_size;
        assert!(index < self.max_instances);

        let instance = unsafe { &mut *handle.instance };

        // Deallocate any resources used by the instance
        self.deallocate_memories(index, &mut instance.memories);
        self.deallocate_tables(index, &mut instance.tables);

        // We've now done all of the pooling-allocator-specific
        // teardown, so we can drop the Instance and let destructors
        // take care of any other fields (host state, globals, etc.).
        unsafe {
            std::ptr::drop_in_place(instance as *mut _);
        }
        // The instance is now uninitialized memory and cannot be
        // touched again until we write a fresh Instance in-place with
        // std::ptr::write in allocate() above.

        self.index_allocator.lock().unwrap().free(SlotId(index));
    }

    fn allocate_instance_resources(
        &self,
        instance_index: usize,
        runtime_info: &dyn ModuleRuntimeInfo,
        store: Option<*mut dyn Store>,
        memories: &mut PrimaryMap<DefinedMemoryIndex, Memory>,
        tables: &mut PrimaryMap<DefinedTableIndex, Table>,
    ) -> Result<(), InstantiationError> {
        self.allocate_memories(instance_index, runtime_info, store, memories)?;
        self.allocate_tables(instance_index, runtime_info, store, tables)?;

        Ok(())
    }

    fn allocate_memories(
        &self,
        instance_index: usize,
        runtime_info: &dyn ModuleRuntimeInfo,
        store: Option<*mut dyn Store>,
        memories: &mut PrimaryMap<DefinedMemoryIndex, Memory>,
    ) -> Result<(), InstantiationError> {
        let module = runtime_info.module();

        self.validate_memory_plans(module)
            .map_err(InstantiationError::Resource)?;

        for (memory_index, plan) in module
            .memory_plans
            .iter()
            .skip(module.num_imported_memories)
        {
            let defined_index = module
                .defined_memory_index(memory_index)
                .expect("should be a defined memory since we skipped imported ones");

            let memory = unsafe {
                std::slice::from_raw_parts_mut(
                    self.memories.get_base(instance_index, defined_index),
                    self.memories.max_memory_size,
                )
            };

            if let Some(image) = runtime_info
                .memory_image(defined_index)
                .map_err(|err| InstantiationError::Resource(err.into()))?
            {
                let mut slot = self
                    .memories
                    .take_memory_image_slot(instance_index, defined_index);
                let initial_size = plan.memory.minimum * WASM_PAGE_SIZE as u64;

                // If instantiation fails, we can propagate the error
                // upward and drop the slot. This will cause the Drop
                // handler to attempt to map the range with PROT_NONE
                // memory, to reserve the space while releasing any
                // stale mappings. The next use of this slot will then
                // create a new slot that will try to map over
                // this, returning errors as well if the mapping
                // errors persist. The unmap-on-drop is best effort;
                // if it fails, then we can still soundly continue
                // using the rest of the pool and allowing the rest of
                // the process to continue, because we never perform a
                // mmap that would leave an open space for someone
                // else to come in and map something.
                slot.instantiate(initial_size as usize, Some(image))
                    .map_err(|e| InstantiationError::Resource(e.into()))?;

                memories.push(
                    Memory::new_static(plan, memory, None, Some(slot), unsafe {
                        &mut *store.unwrap()
                    })
                    .map_err(InstantiationError::Resource)?,
                );
            } else {
                memories.push(
                    Memory::new_static(plan, memory, Some(commit_memory_pages), None, unsafe {
                        &mut *store.unwrap()
                    })
                    .map_err(InstantiationError::Resource)?,
                );
            }
        }

        Ok(())
    }

    fn deallocate_memories(
        &self,
        instance_index: usize,
        memories: &mut PrimaryMap<DefinedMemoryIndex, Memory>,
    ) {
        // Decommit any linear memories that were used.
        let memories = mem::take(memories);
        for ((def_mem_idx, mut memory), base) in
            memories.into_iter().zip(self.memories.get(instance_index))
        {
            assert!(memory.is_static());
            let size = memory.byte_size();
            if let Some(mut image) = memory.unwrap_static_image() {
                // Reset the image slot. If there is any error clearing the
                // image, just drop it here, and let the drop handler for the
                // slot unmap in a way that retains the address space
                // reservation.
                if image.clear_and_remain_ready().is_ok() {
                    self.memories
                        .return_memory_image_slot(instance_index, def_mem_idx, image);
                }
            } else {
                // Otherwise, decommit the memory pages.
                decommit_memory_pages(base, size).expect("failed to decommit linear memory pages");
            }
        }
    }

    fn allocate_tables(
        &self,
        instance_index: usize,
        runtime_info: &dyn ModuleRuntimeInfo,
        store: Option<*mut dyn Store>,
        tables: &mut PrimaryMap<DefinedTableIndex, Table>,
    ) -> Result<(), InstantiationError> {
        let module = runtime_info.module();

        self.validate_table_plans(module)
            .map_err(InstantiationError::Resource)?;

        let mut bases = self.tables.get(instance_index);
        for (_, plan) in module.table_plans.iter().skip(module.num_imported_tables) {
            let base = bases.next().unwrap() as _;

            commit_table_pages(
                base as *mut u8,
                self.tables.max_elements as usize * mem::size_of::<*mut u8>(),
            )
            .map_err(InstantiationError::Resource)?;

            tables.push(
                Table::new_static(
                    plan,
                    unsafe {
                        std::slice::from_raw_parts_mut(base, self.tables.max_elements as usize)
                    },
                    unsafe { &mut *store.unwrap() },
                )
                .map_err(InstantiationError::Resource)?,
            );
        }

        Ok(())
    }

    fn deallocate_tables(
        &self,
        instance_index: usize,
        tables: &mut PrimaryMap<DefinedTableIndex, Table>,
    ) {
        // Decommit any tables that were used
        for (table, base) in tables.values_mut().zip(self.tables.get(instance_index)) {
            let table = mem::take(table);
            assert!(table.is_static());

            let size = round_up_to_pow2(
                table.size() as usize * mem::size_of::<*mut u8>(),
                self.tables.page_size,
            );

            drop(table);
            decommit_table_pages(base, size).expect("failed to decommit table pages");
        }
    }

    fn validate_table_plans(&self, module: &Module) -> Result<()> {
        let tables = module.table_plans.len() - module.num_imported_tables;
        if tables > self.tables.max_tables {
            bail!(
                "defined tables count of {} exceeds the limit of {}",
                tables,
                self.tables.max_tables,
            );
        }

        for (i, plan) in module.table_plans.iter().skip(module.num_imported_tables) {
            if plan.table.minimum > self.tables.max_elements {
                bail!(
                    "table index {} has a minimum element size of {} which exceeds the limit of {}",
                    i.as_u32(),
                    plan.table.minimum,
                    self.tables.max_elements,
                );
            }
        }
        Ok(())
    }

    fn validate_memory_plans(&self, module: &Module) -> Result<()> {
        let memories = module.memory_plans.len() - module.num_imported_memories;
        if memories > self.memories.max_memories {
            bail!(
                "defined memories count of {} exceeds the limit of {}",
                memories,
                self.memories.max_memories,
            );
        }

        for (i, plan) in module
            .memory_plans
            .iter()
            .skip(module.num_imported_memories)
        {
            let max = self.memories.max_memory_size / (WASM_PAGE_SIZE as usize);
            if plan.memory.minimum > (max as u64) {
                bail!(
                    "memory index {} has a minimum page size of {} which exceeds the limit of {}",
                    i.as_u32(),
                    plan.memory.minimum,
                    max,
                );
            }
        }
        Ok(())
    }

    fn validate_instance_size(&self, module: &Module) -> Result<VMOffsets<HostPtr>> {
        let offsets = VMOffsets::new(HostPtr, module);
        let layout = Instance::alloc_layout(&offsets);
        if layout.size() <= self.instance_size {
            return Ok(offsets);
        }

        // If this `module` exceeds the allocation size allotted to it then an
        // error will be reported here. The error of "required N bytes but
        // cannot allocate that" is pretty opaque, however, because it's not
        // clear what the breakdown of the N bytes are and what to optimize
        // next. To help provide a better error message here some fancy-ish
        // logic is done here to report the breakdown of the byte request into
        // the largest portions and where it's coming from.
        let mut message = format!(
            "instance allocation for this module \
             requires {} bytes which exceeds the configured maximum \
             of {} bytes; breakdown of allocation requirement:\n\n",
            layout.size(),
            self.instance_size,
        );

        let mut remaining = layout.size();
        let mut push = |name: &str, bytes: usize| {
            assert!(remaining >= bytes);
            remaining -= bytes;

            // If the `name` region is more than 5% of the allocation request
            // then report it here, otherwise ignore it. We have less than 20
            // fields so we're guaranteed that something should be reported, and
            // otherwise it's not particularly interesting to learn about 5
            // different fields that are all 8 or 0 bytes. Only try to report
            // the "major" sources of bytes here.
            if bytes > layout.size() / 20 {
                message.push_str(&format!(
                    " * {:.02}% - {} bytes - {}\n",
                    ((bytes as f32) / (layout.size() as f32)) * 100.0,
                    bytes,
                    name,
                ));
            }
        };

        // The `Instance` itself requires some size allocated to it.
        push("instance state management", mem::size_of::<Instance>());

        // Afterwards the `VMContext`'s regions are why we're requesting bytes,
        // so ask it for descriptions on each region's byte size.
        for (desc, size) in offsets.region_sizes() {
            push(desc, size as usize);
        }

        // double-check we accounted for all the bytes
        assert_eq!(remaining, 0);

        bail!("{}", message)
    }
}

/// Represents a pool of WebAssembly linear memories.
///
/// A linear memory is divided into accessible pages and guard pages.
///
/// Each instance index into the pool returns an iterator over the base addresses
/// of the instance's linear memories.
#[derive(Debug)]
struct MemoryPool {
    mapping: Mmap,
    // If using a copy-on-write allocation scheme, the slot management. We
    // dynamically transfer ownership of a slot to a Memory when in
    // use.
    image_slots: Vec<Mutex<Option<MemoryImageSlot>>>,
    // The size, in bytes, of each linear memory's reservation plus the guard
    // region allocated for it.
    memory_reservation_size: usize,
    // The maximum size, in bytes, of each linear memory. Guaranteed to be a
    // whole number of wasm pages.
    max_memory_size: usize,
    // The size, in bytes, of the offset to the first linear memory in this
    // pool. This is here to help account for the first region of guard pages,
    // if desired, before the first linear memory.
    initial_memory_offset: usize,
    max_memories: usize,
    max_instances: usize,
}

impl MemoryPool {
    fn new(instance_limits: &InstanceLimits, tunables: &Tunables) -> Result<Self> {
        // The maximum module memory page count cannot exceed 65536 pages
        if instance_limits.memory_pages > 0x10000 {
            bail!(
                "module memory page limit of {} exceeds the maximum of 65536",
                instance_limits.memory_pages
            );
        }

        // The maximum module memory page count cannot exceed the memory reservation size
        if u64::from(instance_limits.memory_pages) > tunables.static_memory_bound {
            bail!(
                "module memory page limit of {} pages exceeds maximum static memory limit of {} pages",
                instance_limits.memory_pages,
                tunables.static_memory_bound,
            );
        }

        let memory_size = if instance_limits.memory_pages > 0 {
            usize::try_from(
                u64::from(tunables.static_memory_bound) * u64::from(WASM_PAGE_SIZE)
                    + tunables.static_memory_offset_guard_size,
            )
            .map_err(|_| anyhow!("memory reservation size exceeds addressable memory"))?
        } else {
            0
        };

        assert!(
            memory_size % crate::page_size() == 0,
            "memory size {} is not a multiple of system page size",
            memory_size
        );

        let max_instances = instance_limits.count as usize;
        let max_memories = instance_limits.memories as usize;
        let initial_memory_offset = if tunables.guard_before_linear_memory {
            usize::try_from(tunables.static_memory_offset_guard_size).unwrap()
        } else {
            0
        };

        // The entire allocation here is the size of each memory times the
        // max memories per instance times the number of instances allowed in
        // this pool, plus guard regions.
        //
        // Note, though, that guard regions are required to be after each linear
        // memory. If the `guard_before_linear_memory` setting is specified,
        // then due to the contiguous layout of linear memories the guard pages
        // after one memory are also guard pages preceding the next linear
        // memory. This means that we only need to handle pre-guard-page sizes
        // specially for the first linear memory, hence the
        // `initial_memory_offset` variable here. If guards aren't specified
        // before linear memories this is set to `0`, otherwise it's set to
        // the same size as guard regions for other memories.
        let allocation_size = memory_size
            .checked_mul(max_memories)
            .and_then(|c| c.checked_mul(max_instances))
            .and_then(|c| c.checked_add(initial_memory_offset))
            .ok_or_else(|| {
                anyhow!("total size of memory reservation exceeds addressable memory")
            })?;

        // Create a completely inaccessible region to start
        let mapping = Mmap::accessible_reserved(0, allocation_size)
            .context("failed to create memory pool mapping")?;

        let num_image_slots = if cfg!(memory_init_cow) {
            max_instances * max_memories
        } else {
            0
        };
        let image_slots: Vec<_> = std::iter::repeat_with(|| Mutex::new(None))
            .take(num_image_slots)
            .collect();

        let pool = Self {
            mapping,
            image_slots,
            memory_reservation_size: memory_size,
            initial_memory_offset,
            max_memories,
            max_instances,
            max_memory_size: (instance_limits.memory_pages as usize) * (WASM_PAGE_SIZE as usize),
        };

        Ok(pool)
    }

    fn get_base(&self, instance_index: usize, memory_index: DefinedMemoryIndex) -> *mut u8 {
        assert!(instance_index < self.max_instances);
        let memory_index = memory_index.as_u32() as usize;
        assert!(memory_index < self.max_memories);
        let idx = instance_index * self.max_memories + memory_index;
        let offset = self.initial_memory_offset + idx * self.memory_reservation_size;
        unsafe { self.mapping.as_mut_ptr().offset(offset as isize) }
    }

    fn get<'a>(&'a self, instance_index: usize) -> impl Iterator<Item = *mut u8> + 'a {
        (0..self.max_memories)
            .map(move |i| self.get_base(instance_index, DefinedMemoryIndex::from_u32(i as u32)))
    }

    /// Take ownership of the given image slot. Must be returned via
    /// `return_memory_image_slot` when the instance is done using it.
    fn take_memory_image_slot(
        &self,
        instance_index: usize,
        memory_index: DefinedMemoryIndex,
    ) -> MemoryImageSlot {
        let idx = instance_index * self.max_memories + (memory_index.as_u32() as usize);
        let maybe_slot = self.image_slots[idx].lock().unwrap().take();

        maybe_slot.unwrap_or_else(|| {
            MemoryImageSlot::create(
                self.get_base(instance_index, memory_index) as *mut c_void,
                0,
                self.max_memory_size,
            )
        })
    }

    /// Return ownership of the given image slot.
    fn return_memory_image_slot(
        &self,
        instance_index: usize,
        memory_index: DefinedMemoryIndex,
        slot: MemoryImageSlot,
    ) {
        assert!(!slot.is_dirty());
        let idx = instance_index * self.max_memories + (memory_index.as_u32() as usize);
        *self.image_slots[idx].lock().unwrap() = Some(slot);
    }
}

impl Drop for MemoryPool {
    fn drop(&mut self) {
        // Clear the `clear_no_drop` flag (i.e., ask to *not* clear on
        // drop) for all slots, and then drop them here. This is
        // valid because the one `Mmap` that covers the whole region
        // can just do its one munmap.
        for mut slot in std::mem::take(&mut self.image_slots) {
            if let Some(slot) = slot.get_mut().unwrap() {
                slot.no_clear_on_drop();
            }
        }
    }
}

/// Represents a pool of WebAssembly tables.
///
/// Each instance index into the pool returns an iterator over the base addresses
/// of the instance's tables.
#[derive(Debug)]
struct TablePool {
    mapping: Mmap,
    table_size: usize,
    max_tables: usize,
    max_instances: usize,
    page_size: usize,
    max_elements: u32,
}

impl TablePool {
    fn new(instance_limits: &InstanceLimits) -> Result<Self> {
        let page_size = crate::page_size();

        let table_size = round_up_to_pow2(
            mem::size_of::<*mut u8>()
                .checked_mul(instance_limits.table_elements as usize)
                .ok_or_else(|| anyhow!("table size exceeds addressable memory"))?,
            page_size,
        );

        let max_instances = instance_limits.count as usize;
        let max_tables = instance_limits.tables as usize;

        let allocation_size = table_size
            .checked_mul(max_tables)
            .and_then(|c| c.checked_mul(max_instances))
            .ok_or_else(|| anyhow!("total size of instance tables exceeds addressable memory"))?;

        let mapping = Mmap::accessible_reserved(allocation_size, allocation_size)
            .context("failed to create table pool mapping")?;

        Ok(Self {
            mapping,
            table_size,
            max_tables,
            max_instances,
            page_size,
            max_elements: instance_limits.table_elements,
        })
    }

    fn get(&self, instance_index: usize) -> impl Iterator<Item = *mut u8> {
        assert!(instance_index < self.max_instances);

        let base: *mut u8 = unsafe {
            self.mapping
                .as_mut_ptr()
                .add(instance_index * self.table_size * self.max_tables) as _
        };

        let size = self.table_size;
        (0..self.max_tables).map(move |i| unsafe { base.add(i * size) })
    }
}

/// Represents a pool of execution stacks (used for the async fiber implementation).
///
/// Each index into the pool represents a single execution stack. The maximum number of
/// stacks is the same as the maximum number of instances.
///
/// As stacks grow downwards, each stack starts (lowest address) with a guard page
/// that can be used to detect stack overflow.
///
/// The top of the stack (starting stack pointer) is returned when a stack is allocated
/// from the pool.
#[cfg(all(feature = "async", unix))]
#[derive(Debug)]
struct StackPool {
    mapping: Mmap,
    stack_size: usize,
    max_instances: usize,
    page_size: usize,
    index_allocator: Mutex<PoolingAllocationState>,
    async_stack_zeroing: bool,
}

#[cfg(all(feature = "async", unix))]
impl StackPool {
    fn new(
        instance_limits: &InstanceLimits,
        stack_size: usize,
        async_stack_zeroing: bool,
    ) -> Result<Self> {
        use rustix::mm::{mprotect, MprotectFlags};

        let page_size = crate::page_size();

        // Add a page to the stack size for the guard page when using fiber stacks
        let stack_size = if stack_size == 0 {
            0
        } else {
            round_up_to_pow2(stack_size, page_size)
                .checked_add(page_size)
                .ok_or_else(|| anyhow!("stack size exceeds addressable memory"))?
        };

        let max_instances = instance_limits.count as usize;

        let allocation_size = stack_size
            .checked_mul(max_instances)
            .ok_or_else(|| anyhow!("total size of execution stacks exceeds addressable memory"))?;

        let mapping = Mmap::accessible_reserved(allocation_size, allocation_size)
            .context("failed to create stack pool mapping")?;

        // Set up the stack guard pages
        if allocation_size > 0 {
            unsafe {
                for i in 0..max_instances {
                    // Make the stack guard page inaccessible
                    let bottom_of_stack = mapping.as_mut_ptr().add(i * stack_size);
                    mprotect(bottom_of_stack.cast(), page_size, MprotectFlags::empty())
                        .context("failed to protect stack guard page")?;
                }
            }
        }

        Ok(Self {
            mapping,
            stack_size,
            max_instances,
            page_size,
            async_stack_zeroing,
            // We always use a `NextAvailable` strategy for stack
            // allocation. We don't want or need an affinity policy
            // here: stacks do not benefit from being allocated to the
            // same compiled module with the same image (they always
            // start zeroed just the same for everyone).
            index_allocator: Mutex::new(PoolingAllocationState::new(
                PoolingAllocationStrategy::NextAvailable,
                max_instances,
            )),
        })
    }

    fn allocate(&self) -> Result<wasmtime_fiber::FiberStack, FiberStackError> {
        if self.stack_size == 0 {
            return Err(FiberStackError::NotSupported);
        }

        let index = {
            let mut alloc = self.index_allocator.lock().unwrap();
            if alloc.is_empty() {
                return Err(FiberStackError::Limit(self.max_instances as u32));
            }
            alloc.alloc(None).index()
        };

        assert!(index < self.max_instances);

        unsafe {
            // Remove the guard page from the size
            let size_without_guard = self.stack_size - self.page_size;

            let bottom_of_stack = self
                .mapping
                .as_mut_ptr()
                .add((index * self.stack_size) + self.page_size);

            commit_stack_pages(bottom_of_stack, size_without_guard)
                .map_err(FiberStackError::Resource)?;

            wasmtime_fiber::FiberStack::from_top_ptr(bottom_of_stack.add(size_without_guard))
                .map_err(|e| FiberStackError::Resource(e.into()))
        }
    }

    fn deallocate(&self, stack: &wasmtime_fiber::FiberStack) {
        let top = stack
            .top()
            .expect("fiber stack not allocated from the pool") as usize;

        let base = self.mapping.as_ptr() as usize;
        let len = self.mapping.len();
        assert!(
            top > base && top <= (base + len),
            "fiber stack top pointer not in range"
        );

        // Remove the guard page from the size
        let stack_size = self.stack_size - self.page_size;
        let bottom_of_stack = top - stack_size;
        let start_of_stack = bottom_of_stack - self.page_size;
        assert!(start_of_stack >= base && start_of_stack < (base + len));
        assert!((start_of_stack - base) % self.stack_size == 0);

        let index = (start_of_stack - base) / self.stack_size;
        assert!(index < self.max_instances);

        if self.async_stack_zeroing {
            reset_stack_pages_to_zero(bottom_of_stack as _, stack_size).unwrap();
        }

        self.index_allocator.lock().unwrap().free(SlotId(index));
    }
}

/// Implements the pooling instance allocator.
///
/// This allocator internally maintains pools of instances, memories, tables, and stacks.
///
/// Note: the resource pools are manually dropped so that the fault handler terminates correctly.
#[derive(Debug)]
pub struct PoolingInstanceAllocator {
    instances: InstancePool,
    #[cfg(all(feature = "async", unix))]
    stacks: StackPool,
    #[cfg(all(feature = "async", windows))]
    stack_size: usize,
}

impl PoolingInstanceAllocator {
    /// Creates a new pooling instance allocator with the given strategy and limits.
    pub fn new(
        strategy: PoolingAllocationStrategy,
        instance_limits: InstanceLimits,
        stack_size: usize,
        tunables: &Tunables,
        async_stack_zeroing: bool,
    ) -> Result<Self> {
        if instance_limits.count == 0 {
            bail!("the instance count limit cannot be zero");
        }

        let instances = InstancePool::new(strategy, &instance_limits, tunables)?;

        drop(stack_size); // suppress unused warnings w/o async feature
        drop(async_stack_zeroing); // suppress unused warnings w/o async feature

        Ok(Self {
            instances: instances,
            #[cfg(all(feature = "async", unix))]
            stacks: StackPool::new(&instance_limits, stack_size, async_stack_zeroing)?,
            #[cfg(all(feature = "async", windows))]
            stack_size,
        })
    }
}

unsafe impl InstanceAllocator for PoolingInstanceAllocator {
    fn validate(&self, module: &Module) -> Result<()> {
        self.instances.validate_memory_plans(module)?;
        self.instances.validate_table_plans(module)?;

        // Note that this check is not 100% accurate for cross-compiled systems
        // where the pointer size may change since this check is often performed
        // at compile time instead of runtime. Given that Wasmtime is almost
        // always on a 64-bit platform though this is generally ok, and
        // otherwise this check also happens during instantiation to
        // double-check at that point.
        self.instances.validate_instance_size(module)?;

        Ok(())
    }

    fn adjust_tunables(&self, tunables: &mut Tunables) {
        // Treat the static memory bound as the maximum for unbounded Wasm memories
        // Because we guarantee a module cannot compile unless it fits in the limits of
        // the pool allocator, this ensures all memories are treated as static (i.e. immovable).
        tunables.static_memory_bound_is_maximum = true;
    }

    unsafe fn allocate(
        &self,
        req: InstanceAllocationRequest,
    ) -> Result<InstanceHandle, InstantiationError> {
        self.instances.allocate(req)
    }

    unsafe fn initialize(
        &self,
        handle: &mut InstanceHandle,
        module: &Module,
        is_bulk_memory: bool,
    ) -> Result<(), InstantiationError> {
        let instance = handle.instance_mut();
        initialize_instance(instance, module, is_bulk_memory)
    }

    unsafe fn deallocate(&self, handle: &InstanceHandle) {
        self.instances.deallocate(handle);
    }

    #[cfg(all(feature = "async", unix))]
    fn allocate_fiber_stack(&self) -> Result<wasmtime_fiber::FiberStack, FiberStackError> {
        self.stacks.allocate()
    }

    #[cfg(all(feature = "async", unix))]
    unsafe fn deallocate_fiber_stack(&self, stack: &wasmtime_fiber::FiberStack) {
        self.stacks.deallocate(stack);
    }

    #[cfg(all(feature = "async", windows))]
    fn allocate_fiber_stack(&self) -> Result<wasmtime_fiber::FiberStack, FiberStackError> {
        if self.stack_size == 0 {
            return Err(FiberStackError::NotSupported);
        }

        // On windows, we don't use a stack pool as we use the native fiber implementation
        wasmtime_fiber::FiberStack::new(self.stack_size)
            .map_err(|e| FiberStackError::Resource(e.into()))
    }

    #[cfg(all(feature = "async", windows))]
    unsafe fn deallocate_fiber_stack(&self, _stack: &wasmtime_fiber::FiberStack) {
        // A no-op as we don't own the fiber stack on Windows
    }
}

#[cfg(test)]
mod test {
    use super::*;
    use crate::{CompiledModuleId, Imports, MemoryImage, StorePtr, VMSharedSignatureIndex};
    use std::sync::Arc;
    use wasmtime_environ::{DefinedFuncIndex, DefinedMemoryIndex, FunctionInfo, SignatureIndex};

    pub(crate) fn empty_runtime_info(
        module: Arc<wasmtime_environ::Module>,
    ) -> Arc<dyn ModuleRuntimeInfo> {
        struct RuntimeInfo(Arc<wasmtime_environ::Module>);

        impl ModuleRuntimeInfo for RuntimeInfo {
            fn module(&self) -> &Arc<wasmtime_environ::Module> {
                &self.0
            }
            fn image_base(&self) -> usize {
                0
            }
            fn function_info(&self, _: DefinedFuncIndex) -> &FunctionInfo {
                unimplemented!()
            }
            fn signature(&self, _: SignatureIndex) -> VMSharedSignatureIndex {
                unimplemented!()
            }
            fn memory_image(
                &self,
                _: DefinedMemoryIndex,
            ) -> anyhow::Result<Option<&Arc<MemoryImage>>> {
                Ok(None)
            }

            fn unique_id(&self) -> Option<CompiledModuleId> {
                None
            }
            fn wasm_data(&self) -> &[u8] {
                &[]
            }
            fn signature_ids(&self) -> &[VMSharedSignatureIndex] {
                &[]
            }
        }

        Arc::new(RuntimeInfo(module))
    }

    #[cfg(target_pointer_width = "64")]
    #[test]
    fn test_instance_pool() -> Result<()> {
        let instance_limits = InstanceLimits {
            count: 3,
            tables: 1,
            memories: 1,
            table_elements: 10,
            size: 1000,
            memory_pages: 1,
            ..Default::default()
        };

        let instances = InstancePool::new(
            PoolingAllocationStrategy::NextAvailable,
            &instance_limits,
            &Tunables {
                static_memory_bound: 1,
                ..Tunables::default()
            },
        )?;

        assert_eq!(instances.instance_size, 1008); // round 1000 up to alignment
        assert_eq!(instances.max_instances, 3);

        assert_eq!(
            instances.index_allocator.lock().unwrap().testing_freelist(),
            &[SlotId(0), SlotId(1), SlotId(2)]
        );

        let mut handles = Vec::new();
        let module = Arc::new(Module::default());

        for _ in (0..3).rev() {
            handles.push(
                instances
                    .allocate(InstanceAllocationRequest {
                        runtime_info: &empty_runtime_info(module.clone()),
                        imports: Imports {
                            functions: &[],
                            tables: &[],
                            memories: &[],
                            globals: &[],
                        },
                        host_state: Box::new(()),
                        store: StorePtr::empty(),
                    })
                    .expect("allocation should succeed"),
            );
        }

        assert_eq!(
            instances.index_allocator.lock().unwrap().testing_freelist(),
            &[]
        );

        match instances.allocate(InstanceAllocationRequest {
            runtime_info: &empty_runtime_info(module),
            imports: Imports {
                functions: &[],
                tables: &[],
                memories: &[],
                globals: &[],
            },
            host_state: Box::new(()),
            store: StorePtr::empty(),
        }) {
            Err(InstantiationError::Limit(3)) => {}
            _ => panic!("unexpected error"),
        };

        for handle in handles.drain(..) {
            instances.deallocate(&handle);
        }

        assert_eq!(
            instances.index_allocator.lock().unwrap().testing_freelist(),
            &[SlotId(2), SlotId(1), SlotId(0)]
        );

        Ok(())
    }

    #[cfg(target_pointer_width = "64")]
    #[test]
    fn test_memory_pool() -> Result<()> {
        let pool = MemoryPool::new(
            &InstanceLimits {
                count: 5,
                tables: 0,
                memories: 3,
                table_elements: 0,
                memory_pages: 1,
                ..Default::default()
            },
            &Tunables {
                static_memory_bound: 1,
                static_memory_offset_guard_size: 0,
                ..Tunables::default()
            },
        )?;

        assert_eq!(pool.memory_reservation_size, WASM_PAGE_SIZE as usize);
        assert_eq!(pool.max_memories, 3);
        assert_eq!(pool.max_instances, 5);
        assert_eq!(pool.max_memory_size, WASM_PAGE_SIZE as usize);

        let base = pool.mapping.as_ptr() as usize;

        for i in 0..5 {
            let mut iter = pool.get(i);

            for j in 0..3 {
                assert_eq!(
                    iter.next().unwrap() as usize - base,
                    ((i * 3) + j) * pool.memory_reservation_size
                );
            }

            assert_eq!(iter.next(), None);
        }

        Ok(())
    }

    #[cfg(target_pointer_width = "64")]
    #[test]
    fn test_table_pool() -> Result<()> {
        let pool = TablePool::new(&InstanceLimits {
            count: 7,
            table_elements: 100,
            memory_pages: 0,
            tables: 4,
            memories: 0,
            ..Default::default()
        })?;

        let host_page_size = crate::page_size();

        assert_eq!(pool.table_size, host_page_size);
        assert_eq!(pool.max_tables, 4);
        assert_eq!(pool.max_instances, 7);
        assert_eq!(pool.page_size, host_page_size);
        assert_eq!(pool.max_elements, 100);

        let base = pool.mapping.as_ptr() as usize;

        for i in 0..7 {
            let mut iter = pool.get(i);

            for j in 0..4 {
                assert_eq!(
                    iter.next().unwrap() as usize - base,
                    ((i * 4) + j) * pool.table_size
                );
            }

            assert_eq!(iter.next(), None);
        }

        Ok(())
    }

    #[cfg(all(unix, target_pointer_width = "64", feature = "async"))]
    #[test]
    fn test_stack_pool() -> Result<()> {
        let pool = StackPool::new(
            &InstanceLimits {
                count: 10,
                ..Default::default()
            },
            1,
            true,
        )?;

        let native_page_size = crate::page_size();
        assert_eq!(pool.stack_size, 2 * native_page_size);
        assert_eq!(pool.max_instances, 10);
        assert_eq!(pool.page_size, native_page_size);

        assert_eq!(
            pool.index_allocator.lock().unwrap().testing_freelist(),
            &[
                SlotId(0),
                SlotId(1),
                SlotId(2),
                SlotId(3),
                SlotId(4),
                SlotId(5),
                SlotId(6),
                SlotId(7),
                SlotId(8),
                SlotId(9)
            ],
        );

        let base = pool.mapping.as_ptr() as usize;

        let mut stacks = Vec::new();
        for i in (0..10).rev() {
            let stack = pool.allocate().expect("allocation should succeed");
            assert_eq!(
                ((stack.top().unwrap() as usize - base) / pool.stack_size) - 1,
                i
            );
            stacks.push(stack);
        }

        assert_eq!(pool.index_allocator.lock().unwrap().testing_freelist(), &[]);

        match pool.allocate().unwrap_err() {
            FiberStackError::Limit(10) => {}
            _ => panic!("unexpected error"),
        };

        for stack in stacks {
            pool.deallocate(&stack);
        }

        assert_eq!(
            pool.index_allocator.lock().unwrap().testing_freelist(),
            &[
                SlotId(9),
                SlotId(8),
                SlotId(7),
                SlotId(6),
                SlotId(5),
                SlotId(4),
                SlotId(3),
                SlotId(2),
                SlotId(1),
                SlotId(0)
            ],
        );

        Ok(())
    }

    #[test]
    fn test_pooling_allocator_with_zero_instance_count() {
        assert_eq!(
            PoolingInstanceAllocator::new(
                PoolingAllocationStrategy::Random,
                InstanceLimits {
                    count: 0,
                    ..Default::default()
                },
                4096,
                &Tunables::default(),
                true,
            )
            .map_err(|e| e.to_string())
            .expect_err("expected a failure constructing instance allocator"),
            "the instance count limit cannot be zero"
        );
    }

    #[test]
    fn test_pooling_allocator_with_memory_pages_exceeded() {
        assert_eq!(
            PoolingInstanceAllocator::new(
                PoolingAllocationStrategy::Random,
                InstanceLimits {
                    count: 1,
                    memory_pages: 0x10001,
                    ..Default::default()
                },
                4096,
                &Tunables {
                    static_memory_bound: 1,
                    ..Tunables::default()
                },
                true,
            )
            .map_err(|e| e.to_string())
            .expect_err("expected a failure constructing instance allocator"),
            "module memory page limit of 65537 exceeds the maximum of 65536"
        );
    }

    #[test]
    fn test_pooling_allocator_with_reservation_size_exceeded() {
        assert_eq!(
            PoolingInstanceAllocator::new(
                PoolingAllocationStrategy::Random,
                InstanceLimits {
                    count: 1,
                    memory_pages: 2,
                    ..Default::default()
                },
                4096,
                &Tunables {
                    static_memory_bound: 1,
                    static_memory_offset_guard_size: 0,
                    ..Tunables::default()
                },
                true
            )
            .map_err(|e| e.to_string())
            .expect_err("expected a failure constructing instance allocator"),
            "module memory page limit of 2 pages exceeds maximum static memory limit of 1 pages"
        );
    }

    #[cfg(all(unix, target_pointer_width = "64", feature = "async"))]
    #[test]
    fn test_stack_zeroed() -> Result<()> {
        let allocator = PoolingInstanceAllocator::new(
            PoolingAllocationStrategy::NextAvailable,
            InstanceLimits {
                count: 1,
                table_elements: 0,
                memory_pages: 0,
                tables: 0,
                memories: 0,
                ..Default::default()
            },
            128,
            &Tunables::default(),
            true,
        )?;

        unsafe {
            for _ in 0..255 {
                let stack = allocator.allocate_fiber_stack()?;

                // The stack pointer is at the top, so decrement it first
                let addr = stack.top().unwrap().sub(1);

                assert_eq!(*addr, 0);
                *addr = 1;

                allocator.deallocate_fiber_stack(&stack);
            }
        }

        Ok(())
    }

    #[cfg(all(unix, target_pointer_width = "64", feature = "async"))]
    #[test]
    fn test_stack_unzeroed() -> Result<()> {
        let allocator = PoolingInstanceAllocator::new(
            PoolingAllocationStrategy::NextAvailable,
            InstanceLimits {
                count: 1,
                table_elements: 0,
                memory_pages: 0,
                tables: 0,
                memories: 0,
                ..Default::default()
            },
            128,
            &Tunables::default(),
            false,
        )?;

        unsafe {
            for i in 0..255 {
                let stack = allocator.allocate_fiber_stack()?;

                // The stack pointer is at the top, so decrement it first
                let addr = stack.top().unwrap().sub(1);

                assert_eq!(*addr, i);
                *addr = i + 1;

                allocator.deallocate_fiber_stack(&stack);
            }
        }

        Ok(())
    }
}