1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
use crate::Mmap;
use anyhow::{Context, Result};
use std::fs::File;
use std::ops::{Deref, DerefMut, Range};
use std::path::Path;
use std::sync::Arc;

/// A type akin to `Vec<u8>`, but backed by `mmap` and able to be split.
///
/// This type is a non-growable owned list of bytes. It can be segmented into
/// disjoint separately owned views akin to the `split_at` method on slices in
/// Rust. An `MmapVec` is backed by an OS-level memory allocation and is not
/// suitable for lots of small allocation (since it works at the page
/// granularity).
///
/// An `MmapVec` is an owned value which means that owners have the ability to
/// get exclusive access to the underlying bytes, enabling mutation.
pub struct MmapVec {
    mmap: Arc<Mmap>,
    range: Range<usize>,
}

impl MmapVec {
    /// Consumes an existing `mmap` and wraps it up into an `MmapVec`.
    ///
    /// The returned `MmapVec` will have the `size` specified, which can be
    /// smaller than the region mapped by the `Mmap`. The returned `MmapVec`
    /// will only have at most `size` bytes accessible.
    pub fn new(mmap: Mmap, size: usize) -> MmapVec {
        assert!(size <= mmap.len());
        MmapVec {
            mmap: Arc::new(mmap),
            range: 0..size,
        }
    }

    /// Creates a new zero-initialized `MmapVec` with the given `size`.
    ///
    /// This commit will return a new `MmapVec` suitably sized to hold `size`
    /// bytes. All bytes will be initialized to zero since this is a fresh OS
    /// page allocation.
    pub fn with_capacity(size: usize) -> Result<MmapVec> {
        Ok(MmapVec::new(Mmap::with_at_least(size)?, size))
    }

    /// Creates a new `MmapVec` from the contents of an existing `slice`.
    ///
    /// A new `MmapVec` is allocated to hold the contents of `slice` and then
    /// `slice` is copied into the new mmap. It's recommended to avoid this
    /// method if possible to avoid the need to copy data around.
    pub fn from_slice(slice: &[u8]) -> Result<MmapVec> {
        let mut result = MmapVec::with_capacity(slice.len())?;
        result.copy_from_slice(slice);
        Ok(result)
    }

    /// Creates a new `MmapVec` which is the `path` specified mmap'd into
    /// memory.
    ///
    /// This function will attempt to open the file located at `path` and will
    /// then use that file to learn about its size and map the full contents
    /// into memory. This will return an error if the file doesn't exist or if
    /// it's too large to be fully mapped into memory.
    pub fn from_file(path: &Path) -> Result<MmapVec> {
        let mmap = Mmap::from_file(path)
            .with_context(|| format!("failed to create mmap for file: {}", path.display()))?;
        let len = mmap.len();
        Ok(MmapVec::new(mmap, len))
    }

    /// Returns whether the original mmap was created from a readonly mapping.
    pub fn is_readonly(&self) -> bool {
        self.mmap.is_readonly()
    }

    /// Splits the collection into two at the given index.
    ///
    /// Returns a separate `MmapVec` which shares the underlying mapping, but
    /// only has access to elements in the range `[at, len)`. After the call,
    /// the original `MmapVec` will be left with access to the elements in the
    /// range `[0, at)`.
    ///
    /// This is an `O(1)` operation which does not involve copies.
    pub fn split_off(&mut self, at: usize) -> MmapVec {
        assert!(at <= self.range.len());

        // Create a new `MmapVec` which refers to the same underlying mmap, but
        // has a disjoint range from ours. Our own range is adjusted to be
        // disjoint just after `ret` is created.
        let ret = MmapVec {
            mmap: self.mmap.clone(),
            range: at..self.range.end,
        };
        self.range.end = self.range.start + at;
        return ret;
    }

    /// Makes the specified `range` within this `mmap` to be read/write.
    pub unsafe fn make_writable(&self, range: Range<usize>) -> Result<()> {
        self.mmap
            .make_writable(range.start + self.range.start..range.end + self.range.start)
    }

    /// Makes the specified `range` within this `mmap` to be read/execute.
    pub unsafe fn make_executable(&self, range: Range<usize>) -> Result<()> {
        self.mmap
            .make_executable(range.start + self.range.start..range.end + self.range.start)
    }

    /// Returns the underlying file that this mmap is mapping, if present.
    pub fn original_file(&self) -> Option<&Arc<File>> {
        self.mmap.original_file()
    }

    /// Returns the offset within the original mmap that this `MmapVec` is
    /// created from.
    pub fn original_offset(&self) -> usize {
        self.range.start
    }
}

impl Deref for MmapVec {
    type Target = [u8];

    fn deref(&self) -> &[u8] {
        &self.mmap.as_slice()[self.range.clone()]
    }
}

impl DerefMut for MmapVec {
    fn deref_mut(&mut self) -> &mut [u8] {
        debug_assert!(!self.is_readonly());
        // SAFETY: The underlying mmap is protected behind an `Arc` which means
        // there there can be many references to it. We are guaranteed, though,
        // that each reference to the underlying `mmap` has a disjoint `range`
        // listed that it can access. This means that despite having shared
        // access to the mmap itself we have exclusive ownership of the bytes
        // specified in `self.range`. This should allow us to safely hand out
        // mutable access to these bytes if so desired.
        unsafe {
            let slice = std::slice::from_raw_parts_mut(self.mmap.as_mut_ptr(), self.mmap.len());
            &mut slice[self.range.clone()]
        }
    }
}

#[cfg(test)]
mod tests {
    use super::MmapVec;

    #[test]
    fn smoke() {
        let mut mmap = MmapVec::with_capacity(10).unwrap();
        assert_eq!(mmap.len(), 10);
        assert_eq!(&mmap[..], &[0; 10]);

        mmap[0] = 1;
        mmap[2] = 3;
        assert!(mmap.get(10).is_none());
        assert_eq!(mmap[0], 1);
        assert_eq!(mmap[2], 3);
    }

    #[test]
    fn split_off() {
        let mut vec = Vec::from([1, 2, 3, 4]);
        let mut mmap = MmapVec::from_slice(&vec).unwrap();
        assert_eq!(&mmap[..], &vec[..]);
        // remove nothing; vec length remains 4
        assert_eq!(&mmap.split_off(4)[..], &vec.split_off(4)[..]);
        assert_eq!(&mmap[..], &vec[..]);
        // remove 1 element; vec length is now 3
        assert_eq!(&mmap.split_off(3)[..], &vec.split_off(3)[..]);
        assert_eq!(&mmap[..], &vec[..]);
        // remove 2 elements; vec length is now 1
        assert_eq!(&mmap.split_off(1)[..], &vec.split_off(1)[..]);
        assert_eq!(&mmap[..], &vec[..]);
        // remove last element; vec length is now 0
        assert_eq!(&mmap.split_off(0)[..], &vec.split_off(0)[..]);
        assert_eq!(&mmap[..], &vec[..]);
        // nothing left to remove, but that's okay
        assert_eq!(&mmap.split_off(0)[..], &vec.split_off(0)[..]);
        assert_eq!(&mmap[..], &vec[..]);
    }
}