1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206
// Copyright 2015-2021 Brian Smith.
//
// Permission to use, copy, modify, and/or distribute this software for any
// purpose with or without fee is hereby granted, provided that the above
// copyright notice and this permission notice appear in all copies.
//
// THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHORS DISCLAIM ALL WARRANTIES
// WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
// MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR
// ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
// WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
// ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
// OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
use crate::{
cert, name, signed_data, verify_cert, DnsNameRef, Error, SignatureAlgorithm, Time,
TlsClientTrustAnchors, TlsServerTrustAnchors,
};
#[cfg(feature = "alloc")]
use alloc::vec::Vec;
/// An end-entity certificate.
///
/// Server certificate processing in a TLS connection consists of several
/// steps. All of these steps are necessary:
///
/// * `EndEntityCert.verify_is_valid_tls_server_cert`: Verify that the server's
/// certificate is currently valid *for use by a TLS server*.
/// * `EndEntityCert.verify_is_valid_for_dns_name`: Verify that the server's
/// certificate is valid for the host that is being connected to.
/// * `EndEntityCert.verify_signature`: Verify that the signature of server's
/// `ServerKeyExchange` message is valid for the server's certificate.
///
/// Client certificate processing in a TLS connection consists of analogous
/// steps. All of these steps are necessary:
///
/// * `EndEntityCert.verify_is_valid_tls_client_cert`: Verify that the client's
/// certificate is currently valid *for use by a TLS client*.
/// * `EndEntityCert.verify_is_valid_for_dns_name` or
/// `EndEntityCert.verify_is_valid_for_at_least_one_dns_name`: Verify that the
/// client's certificate is valid for the identity or identities used to
/// identify the client. (Currently client authentication only works when the
/// client is identified by one or more DNS hostnames.)
/// * `EndEntityCert.verify_signature`: Verify that the client's signature in
/// its `CertificateVerify` message is valid using the public key from the
/// client's certificate.
///
/// Although it would be less error-prone to combine all these steps into a
/// single function call, some significant optimizations are possible if the
/// three steps are processed separately (in parallel). It does not matter much
/// which order the steps are done in, but **all of these steps must completed
/// before application data is sent and before received application data is
/// processed**. `EndEntityCert::from` is an inexpensive operation and is
/// deterministic, so if these tasks are done in multiple threads, it is
/// probably best to just call `EndEntityCert::from` multiple times (before each
/// operation) for the same DER-encoded ASN.1 certificate bytes.
pub struct EndEntityCert<'a> {
inner: cert::Cert<'a>,
}
impl<'a> core::convert::TryFrom<&'a [u8]> for EndEntityCert<'a> {
type Error = Error;
/// Parse the ASN.1 DER-encoded X.509 encoding of the certificate
/// `cert_der`.
fn try_from(cert_der: &'a [u8]) -> Result<Self, Self::Error> {
Ok(Self {
inner: cert::parse_cert(
untrusted::Input::from(cert_der),
cert::EndEntityOrCa::EndEntity,
)?,
})
}
}
impl<'a> EndEntityCert<'a> {
pub(super) fn inner(&self) -> &cert::Cert {
&self.inner
}
/// Verifies that the end-entity certificate is valid for use by a TLS
/// server.
///
/// `supported_sig_algs` is the list of signature algorithms that are
/// trusted for use in certificate signatures; the end-entity certificate's
/// public key is not validated against this list. `trust_anchors` is the
/// list of root CAs to trust. `intermediate_certs` is the sequence of
/// intermediate certificates that the server sent in the TLS handshake.
/// `time` is the time for which the validation is effective (usually the
/// current time).
pub fn verify_is_valid_tls_server_cert(
&self,
supported_sig_algs: &[&SignatureAlgorithm],
&TlsServerTrustAnchors(trust_anchors): &TlsServerTrustAnchors,
intermediate_certs: &[&[u8]],
time: Time,
) -> Result<(), Error> {
verify_cert::build_chain(
verify_cert::EKU_SERVER_AUTH,
supported_sig_algs,
trust_anchors,
intermediate_certs,
&self.inner,
time,
0,
)
}
/// Verifies that the end-entity certificate is valid for use by a TLS
/// client.
///
/// If the certificate is not valid for any of the given names then this
/// fails with `Error::CertNotValidForName`.
///
/// `supported_sig_algs` is the list of signature algorithms that are
/// trusted for use in certificate signatures; the end-entity certificate's
/// public key is not validated against this list. `trust_anchors` is the
/// list of root CAs to trust. `intermediate_certs` is the sequence of
/// intermediate certificates that the client sent in the TLS handshake.
/// `cert` is the purported end-entity certificate of the client. `time` is
/// the time for which the validation is effective (usually the current
/// time).
pub fn verify_is_valid_tls_client_cert(
&self,
supported_sig_algs: &[&SignatureAlgorithm],
&TlsClientTrustAnchors(trust_anchors): &TlsClientTrustAnchors,
intermediate_certs: &[&[u8]],
time: Time,
) -> Result<(), Error> {
verify_cert::build_chain(
verify_cert::EKU_CLIENT_AUTH,
supported_sig_algs,
trust_anchors,
intermediate_certs,
&self.inner,
time,
0,
)
}
/// Verifies that the certificate is valid for the given DNS host name.
pub fn verify_is_valid_for_dns_name(&self, dns_name: DnsNameRef) -> Result<(), Error> {
name::verify_cert_dns_name(&self, dns_name)
}
/// Verifies that the certificate is valid for at least one of the given DNS
/// host names.
///
/// If the certificate is not valid for any of the given names then this
/// fails with `Error::CertNotValidForName`. Otherwise the DNS names for
/// which the certificate is valid are returned.
///
/// Requires the `alloc` default feature; i.e. this isn't available in
/// `#![no_std]` configurations.
#[cfg(feature = "alloc")]
pub fn verify_is_valid_for_at_least_one_dns_name<'names, Names>(
&self,
dns_names: Names,
) -> Result<Vec<DnsNameRef<'names>>, Error>
where
Names: Iterator<Item = DnsNameRef<'names>>,
{
let result: Vec<DnsNameRef<'names>> = dns_names
.filter(|n| self.verify_is_valid_for_dns_name(*n).is_ok())
.collect();
if result.is_empty() {
return Err(Error::CertNotValidForName);
}
Ok(result)
}
/// Verifies the signature `signature` of message `msg` using the
/// certificate's public key.
///
/// `signature_alg` is the algorithm to use to
/// verify the signature; the certificate's public key is verified to be
/// compatible with this algorithm.
///
/// For TLS 1.2, `signature` corresponds to TLS's
/// `DigitallySigned.signature` and `signature_alg` corresponds to TLS's
/// `DigitallySigned.algorithm` of TLS type `SignatureAndHashAlgorithm`. In
/// TLS 1.2 a single `SignatureAndHashAlgorithm` may map to multiple
/// `SignatureAlgorithm`s. For example, a TLS 1.2
/// `ignatureAndHashAlgorithm` of (ECDSA, SHA-256) may map to any or all
/// of {`ECDSA_P256_SHA256`, `ECDSA_P384_SHA256`}, depending on how the TLS
/// implementation is configured.
///
/// For current TLS 1.3 drafts, `signature_alg` corresponds to TLS's
/// `algorithm` fields of type `SignatureScheme`. There is (currently) a
/// one-to-one correspondence between TLS 1.3's `SignatureScheme` and
/// `SignatureAlgorithm`.
pub fn verify_signature(
&self,
signature_alg: &SignatureAlgorithm,
msg: &[u8],
signature: &[u8],
) -> Result<(), Error> {
signed_data::verify_signature(
signature_alg,
self.inner.spki.value(),
untrusted::Input::from(msg),
untrusted::Input::from(signature),
)
}
}