1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
use crate::{region::Region, GuestError, GuestPtr};
use std::mem;

/// A trait for types which are used to report errors. Each type used in the
/// first result position of an interface function is used, by convention, to
/// indicate whether the function was successful and subsequent results are valid,
/// or whether an error occured. This trait allows wiggle to return the correct
/// value when the interface function's idiomatic Rust method returns
/// Ok(<rest of return values>).
pub trait GuestErrorType {
    fn success() -> Self;
}

/// A trait for types that are intended to be pointees in `GuestPtr<T>`.
///
/// This trait abstracts how to read/write information from the guest memory, as
/// well as how to offset elements in an array of guest memory. This layer of
/// abstraction allows the guest representation of a type to be different from
/// the host representation of a type, if necessary. It also allows for
/// validation when reading/writing.
pub trait GuestType<'a>: Sized {
    /// Returns the size, in bytes, of this type in the guest memory.
    fn guest_size() -> u32;

    /// Returns the required alignment of this type, in bytes, for both guest
    /// and host memory.
    fn guest_align() -> usize;

    /// Reads this value from the provided `ptr`.
    ///
    /// Must internally perform any safety checks necessary and is allowed to
    /// fail if the bytes pointed to are also invalid.
    ///
    /// Typically if you're implementing this by hand you'll want to delegate to
    /// other safe implementations of this trait (e.g. for primitive types like
    /// `u32`) rather than writing lots of raw code yourself.
    fn read(ptr: &GuestPtr<'a, Self>) -> Result<Self, GuestError>;

    /// Writes a value to `ptr` after verifying that `ptr` is indeed valid to
    /// store `val`.
    ///
    /// Similar to `read`, you'll probably want to implement this in terms of
    /// other primitives.
    fn write(ptr: &GuestPtr<'_, Self>, val: Self) -> Result<(), GuestError>;
}

/// A trait for `GuestType`s that have the same representation in guest memory
/// as in Rust. These types can be used with the `GuestPtr::as_slice` method to
/// view as a slice.
///
/// Unsafe trait because a correct GuestTypeTransparent implemengation ensures that the
/// GuestPtr::as_slice methods are safe. This trait should only ever be implemented
/// by wiggle_generate-produced code.
pub unsafe trait GuestTypeTransparent<'a>: GuestType<'a> {
    /// Checks that the memory at `ptr` is a valid representation of `Self`.
    ///
    /// Assumes that memory safety checks have already been performed: `ptr`
    /// has been checked to be aligned correctly and reside in memory using
    /// `GuestMemory::validate_size_align`
    fn validate(ptr: *mut Self) -> Result<(), GuestError>;
}

macro_rules! primitives {
    ($($i:ident)*) => ($(
        impl<'a> GuestType<'a> for $i {
            fn guest_size() -> u32 { mem::size_of::<Self>() as u32 }
            fn guest_align() -> usize { mem::align_of::<Self>() }

            #[inline]
            fn read(ptr: &GuestPtr<'a, Self>) -> Result<Self, GuestError> {
                // Any bit pattern for any primitive implemented with this
                // macro is safe, so our `validate_size_align` method will
                // guarantee that if we are given a pointer it's valid for the
                // size of our type as well as properly aligned. Consequently we
                // should be able to safely ready the pointer just after we
                // validated it, returning it along here.
                let offset = ptr.offset();
                let size = Self::guest_size();
                let host_ptr = ptr.mem().validate_size_align(
                    offset,
                    Self::guest_align(),
                    size,
                )?;
                let region = Region {
                    start: offset,
                    len: size,
                };
                if ptr.mem().is_mut_borrowed(region) {
                    return Err(GuestError::PtrBorrowed(region));
                }
                Ok(unsafe { <$i>::from_le_bytes(*host_ptr.cast::<[u8; mem::size_of::<Self>()]>()) })
            }

            #[inline]
            fn write(ptr: &GuestPtr<'_, Self>, val: Self) -> Result<(), GuestError> {
                let offset = ptr.offset();
                let size = Self::guest_size();
                let host_ptr = ptr.mem().validate_size_align(
                    offset,
                    Self::guest_align(),
                    size,
                )?;
                let region = Region {
                    start: offset,
                    len: size,
                };
                if ptr.mem().is_shared_borrowed(region) || ptr.mem().is_mut_borrowed(region) {
                    return Err(GuestError::PtrBorrowed(region));
                }
                unsafe {
                    *host_ptr.cast::<[u8; mem::size_of::<Self>()]>() = <$i>::to_le_bytes(val);
                }
                Ok(())
            }
        }

        unsafe impl<'a> GuestTypeTransparent<'a> for $i {
            #[inline]
            fn validate(_ptr: *mut $i) -> Result<(), GuestError> {
                // All bit patterns are safe, nothing to do here
                Ok(())
            }
        }

    )*)
}

primitives! {
    // signed
    i8 i16 i32 i64 i128
    // unsigned
    u8 u16 u32 u64 u128
    // floats
    f32 f64
}

// Support pointers-to-pointers where pointers are always 32-bits in wasm land
impl<'a, T> GuestType<'a> for GuestPtr<'a, T> {
    fn guest_size() -> u32 {
        u32::guest_size()
    }

    fn guest_align() -> usize {
        u32::guest_align()
    }

    fn read(ptr: &GuestPtr<'a, Self>) -> Result<Self, GuestError> {
        let offset = ptr.cast::<u32>().read()?;
        Ok(GuestPtr::new(ptr.mem(), offset))
    }

    fn write(ptr: &GuestPtr<'_, Self>, val: Self) -> Result<(), GuestError> {
        ptr.cast::<u32>().write(val.offset())
    }
}

// Support pointers-to-arrays where pointers are always 32-bits in wasm land
impl<'a, T> GuestType<'a> for GuestPtr<'a, [T]>
where
    T: GuestType<'a>,
{
    fn guest_size() -> u32 {
        u32::guest_size() * 2
    }

    fn guest_align() -> usize {
        u32::guest_align()
    }

    fn read(ptr: &GuestPtr<'a, Self>) -> Result<Self, GuestError> {
        let offset = ptr.cast::<u32>().read()?;
        let len = ptr.cast::<u32>().add(1)?.read()?;
        Ok(GuestPtr::new(ptr.mem(), offset).as_array(len))
    }

    fn write(ptr: &GuestPtr<'_, Self>, val: Self) -> Result<(), GuestError> {
        let (offs, len) = val.offset();
        let len_ptr = ptr.cast::<u32>().add(1)?;
        ptr.cast::<u32>().write(offs)?;
        len_ptr.write(len)
    }
}