1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925
//! Definition of the ABI of witx functions
//!
//! This module is intended to assist with code generators which are binding or
//! implementing APIs defined by `*.witx` files. THis module contains all
//! details necessary to implement the actual ABI of these functions so wasm
//! modules and hosts can communicate with one another.
//!
//! Each interface types function (a function defined in `*.witx`) currently has
//! a well-known wasm signature associated with it. There's then also a standard
//! way to convert from interface-types values (whose representation is defined
//! per-language) into this wasm API. This module is intended to assist with
//! this definition.
//!
//! Contained within are two primary functions, [`InterfaceFunc::call_wasm`] and
//! [`InterfaceFunc::call_interface`]. These functions implement the two ways to
//! interact with an interface types function, namely calling the raw wasm
//! version and calling the high-level version with interface types. These two
//! functions are fed a structure that implements [`Bindgen`]. An instance of
//! [`Bindgen`] receives instructions which are low-level implementation details
//! of how to convert to and from wasm types and interface types. Code
//! generators will need to implement the various instructions to support APIs.
use crate::{
BuiltinType, Id, IntRepr, InterfaceFunc, InterfaceFuncParam, NamedType, Type, TypeRef,
};
/// Enumerates wasm types used by interface types when lowering/lifting.
#[derive(Debug, Copy, Clone, PartialEq, Eq)]
pub enum WasmType {
I32,
I64,
F32,
F64,
// NOTE: we don't lower interface types to any other Wasm type,
// e.g. externref, so we don't need to define them here.
}
impl From<IntRepr> for WasmType {
fn from(i: IntRepr) -> WasmType {
match i {
IntRepr::U8 | IntRepr::U16 | IntRepr::U32 => WasmType::I32,
IntRepr::U64 => WasmType::I64,
}
}
}
/// Possible ABIs for interface functions to have.
///
/// Note that this is a stopgap until we have more of interface types. Interface
/// types functions do not have ABIs, they have APIs. For the meantime, however,
/// we mandate ABIs to ensure we can all talk to each other.
#[derive(Debug, Copy, Clone, PartialEq, Eq, Hash)]
pub enum Abi {
/// Only stable ABI currently, and is the historical WASI ABI since it was
/// first created.
///
/// Note that this ABI is limited notably in its return values where it can
/// only return 0 results or one `Result<T, enum>` lookalike.
Preview1,
}
// Helper macro for defining instructions without having to have tons of
// exhaustive `match` statements to update
macro_rules! def_instruction {
(
$( #[$enum_attr:meta] )*
pub enum Instruction<'a> {
$(
$( #[$attr:meta] )*
$variant:ident $( {
$($field:ident : $field_ty:ty $(,)* )*
} )?
:
[$num_popped:expr] => [$num_pushed:expr],
)*
}
) => {
$( #[$enum_attr] )*
pub enum Instruction<'a> {
$(
$( #[$attr] )*
$variant $( {
$(
$field : $field_ty,
)*
} )? ,
)*
}
impl Instruction<'_> {
/// How many operands does this instruction pop from the stack?
#[allow(unused_variables)]
pub fn operands_len(&self) -> usize {
match self {
$(
Self::$variant $( {
$(
$field,
)*
} )? => $num_popped,
)*
}
}
/// How many results does this instruction push onto the stack?
#[allow(unused_variables)]
pub fn results_len(&self) -> usize {
match self {
$(
Self::$variant $( {
$(
$field,
)*
} )? => $num_pushed,
)*
}
}
}
};
}
def_instruction! {
#[derive(Debug)]
pub enum Instruction<'a> {
/// Acquires the specified parameter and places it on the stack.
/// Depending on the context this may refer to wasm parameters or
/// interface types parameters.
GetArg { nth: usize } : [0] => [1],
/// Takes the value off the top of the stack and writes it into linear
/// memory. Pushes the address in linear memory as an `i32`.
AddrOf : [1] => [1],
/// Converts an interface type `char` value to a 32-bit integer
/// representing the unicode scalar value.
I32FromChar : [1] => [1],
/// Converts an interface type `u64` value to a wasm `i64`.
I64FromU64 : [1] => [1],
/// Converts an interface type `s64` value to a wasm `i64`.
I64FromS64 : [1] => [1],
/// Converts an interface type `u32` value to a wasm `i32`.
I32FromU32 : [1] => [1],
/// Converts an interface type `s32` value to a wasm `i32`.
I32FromS32 : [1] => [1],
/// Converts a language-specific `usize` value to a wasm `i32`.
I32FromUsize : [1] => [1],
/// Converts an interface type `u16` value to a wasm `i32`.
I32FromU16 : [1] => [1],
/// Converts an interface type `s16` value to a wasm `i32`.
I32FromS16 : [1] => [1],
/// Converts an interface type `u8` value to a wasm `i32`.
I32FromU8 : [1] => [1],
/// Converts an interface type `s8` value to a wasm `i32`.
I32FromS8 : [1] => [1],
/// Converts a language-specific C `char` value to a wasm `i32`.
I32FromChar8 : [1] => [1],
/// Converts a language-specific pointer value to a wasm `i32`.
I32FromPointer : [1] => [1],
/// Converts a language-specific pointer value to a wasm `i32`.
I32FromConstPointer : [1] => [1],
/// Converts a language-specific handle value to a wasm `i32`.
I32FromHandle { ty: &'a NamedType } : [1] => [1],
/// Converts a language-specific record-of-bools to the packed
/// representation as an `i32`.
I32FromBitflags { ty: &'a NamedType } : [1] => [1],
/// Converts a language-specific record-of-bools to the packed
/// representation as an `i64`.
I64FromBitflags { ty: &'a NamedType } : [1] => [1],
/// Converts an interface type list into its pointer/length, pushing
/// them both on the stack.
ListPointerLength : [1] => [2],
/// Pops two `i32` values from the stack and creates a list from them of
/// the specified type. The first operand is the pointer in linear
/// memory to the start of the list and the second operand is the
/// length.
ListFromPointerLength { ty: &'a TypeRef } : [2] => [1],
/// Conversion an interface type `f32` value to a wasm `f32`.
///
/// This may be a noop for some implementations, but it's here in case the
/// native language representation of `f32` is different than the wasm
/// representation of `f32`.
F32FromIf32 : [1] => [1],
/// Conversion an interface type `f64` value to a wasm `f64`.
///
/// This may be a noop for some implementations, but it's here in case the
/// native language representation of `f64` is different than the wasm
/// representation of `f64`.
F64FromIf64 : [1] => [1],
/// Represents a call to a raw WebAssembly API. The module/name are
/// provided inline as well as the types if necessary.
CallWasm {
module: &'a str,
name: &'a str,
params: &'a [WasmType],
results: &'a [WasmType],
} : [params.len()] => [results.len()],
/// Same as `CallWasm`, except the dual where an interface is being
/// called rather than a raw wasm function.
CallInterface {
module: &'a str,
func: &'a InterfaceFunc,
} : [func.params.len()] => [func.results.len()],
/// Converts a native wasm `i32` to an interface type `s8`.
///
/// This will truncate the upper bits of the `i32`.
S8FromI32 : [1] => [1],
/// Converts a native wasm `i32` to an interface type `u8`.
///
/// This will truncate the upper bits of the `i32`.
U8FromI32 : [1] => [1],
/// Converts a native wasm `i32` to an interface type `s16`.
///
/// This will truncate the upper bits of the `i32`.
S16FromI32 : [1] => [1],
/// Converts a native wasm `i32` to an interface type `u16`.
///
/// This will truncate the upper bits of the `i32`.
U16FromI32 : [1] => [1],
/// Converts a native wasm `i32` to an interface type `s32`.
S32FromI32 : [1] => [1],
/// Converts a native wasm `i32` to an interface type `u32`.
U32FromI32 : [1] => [1],
/// Converts a native wasm `i64` to an interface type `s64`.
S64FromI64 : [1] => [1],
/// Converts a native wasm `i64` to an interface type `u64`.
U64FromI64 : [1] => [1],
/// Converts a native wasm `i32` to an interface type `char`.
///
/// It's safe to assume that the `i32` is indeed a valid unicode code point.
CharFromI32 : [1] => [1],
/// Converts a native wasm `i32` to a language-specific C `char`.
///
/// This will truncate the upper bits of the `i32`.
Char8FromI32 : [1] => [1],
/// Converts a native wasm `i32` to a language-specific `usize`.
UsizeFromI32 : [1] => [1],
/// Converts a native wasm `f32` to an interface type `f32`.
If32FromF32 : [1] => [1],
/// Converts a native wasm `f64` to an interface type `f64`.
If64FromF64 : [1] => [1],
/// Converts a native wasm `i32` to an interface type `handle`.
HandleFromI32 { ty: &'a NamedType } : [1] => [1],
/// Converts a native wasm `i32` to a language-specific pointer.
PointerFromI32 { ty: &'a TypeRef }: [1] => [1],
/// Converts a native wasm `i32` to a language-specific pointer.
ConstPointerFromI32 { ty: &'a TypeRef } : [1] => [1],
/// Converts a native wasm `i32` to a language-specific record-of-bools.
BitflagsFromI32 { ty: &'a NamedType } : [1] => [1],
/// Converts a native wasm `i64` to a language-specific record-of-bools.
BitflagsFromI64 { ty: &'a NamedType } : [1] => [1],
/// Acquires the return pointer `n` and pushes an `i32` on the stack.
///
/// Implementations of [`Bindgen`] may have [`Bindgen::allocate_space`]
/// called to reserve space in memory for the result of a computation to
/// get written. This instruction acquires a pointer to the space
/// reserved in `allocate_space`.
ReturnPointerGet { n: usize } : [0] => [1],
/// Loads the interface types value from an `i32` pointer popped from
/// the stack.
Load { ty: &'a NamedType } : [1] => [1],
/// Stores an interface types value into linear memory. The first
/// operand is the value to store and the second operand is the pointer
/// in linear memory to store it at.
Store { ty: &'a NamedType } : [2] => [0],
/// Pops a native wasm `i32` from the stack, as well as two blocks
/// internally from the code generator.
///
/// If the value is 0 then the first "ok" block value should be used.
/// If the value is anything else then the second "err" block value
/// should be used, and the value is used as the error enum.
///
/// Note that this is a special instruction matching the current ABI of
/// WASI and intentionally differs from the type-level grammar of
/// interface types results.
ResultLift : [1] => [1],
/// Pops a native interface value from the stack as well as two blocks
/// internally from the code generator.
///
/// A `match` is performed on the value popped and the corresponding
/// block for ok/err is used depending on value. This pushes a single
/// `i32` onto the stack representing the error code for this result.
///
/// Note that like `ResultLift` this is specialized to the current WASI
/// ABI.
ResultLower {
ok: Option<&'a TypeRef>,
err: Option<&'a TypeRef>,
} : [1] => [1],
/// Converts a native wasm `i32` to an interface type `enum` value.
///
/// It's guaranteed that the interface type integer value is within
/// range for this enum's type. Additionally `ty` is guaranteed to be
/// enum-like as a `Variant` where all `case` arms have no associated
/// type with them. The purpose of this instruction is to convert a
/// native wasm integer into the enum type for the interface.
EnumLift { ty: &'a NamedType } : [1] => [1],
/// Converts an interface types enum value into a wasm `i32`.
EnumLower { ty: &'a NamedType } : [1] => [1],
/// Creates a tuple from the top `n` elements on the stack, pushing the
/// tuple onto the stack.
TupleLift { amt: usize } : [*amt] => [1],
/// Splits a tuple at the top of the stack into its `n` components,
/// pushing them all onto the stack.
TupleLower { amt: usize } : [1] => [*amt],
/// This is a special instruction specifically for the original ABI of
/// WASI. The raw return `i32` of a function is re-pushed onto the
/// stack for reuse.
ReuseReturn : [0] => [1],
/// Returns `amt` values on the stack. This is always the last
/// instruction.
Return { amt: usize } : [*amt] => [0],
/// This is a special instruction used at the entry of blocks used as
/// part of `ResultLower`, representing that the payload of that variant
/// being matched on should be pushed onto the stack.
VariantPayload : [0] => [1],
}
}
impl Abi {
/// Validates the parameters/results are representable in this ABI.
///
/// Returns an error string if they're not representable or returns `Ok` if
/// they're indeed representable.
pub fn validate(
&self,
_params: &[InterfaceFuncParam],
results: &[InterfaceFuncParam],
) -> Result<(), String> {
assert_eq!(*self, Abi::Preview1);
match results.len() {
0 => {}
1 => match &**results[0].tref.type_() {
Type::Handle(_) | Type::Builtin(_) | Type::ConstPointer(_) | Type::Pointer(_) => {}
Type::Variant(v) => {
let (ok, err) = match v.as_expected() {
Some(pair) => pair,
None => return Err("invalid return type".to_string()),
};
if let Some(ty) = ok {
match &**ty.type_() {
Type::Record(r) if r.is_tuple() => {
for member in r.members.iter() {
if !member.tref.named() {
return Err(
"only named types are allowed in results".to_string()
);
}
}
}
_ => {
if !ty.named() {
return Err(
"only named types are allowed in results".to_string()
);
}
}
}
}
if let Some(ty) = err {
if !ty.named() {
return Err("only named types are allowed in results".to_string());
}
if let Type::Variant(v) = &**ty.type_() {
if v.is_enum() {
return Ok(());
}
}
}
}
Type::Record(r) if r.bitflags_repr().is_some() => {}
Type::Record(_) | Type::List(_) => return Err("invalid return type".to_string()),
},
_ => return Err("more than one result".to_string()),
}
Ok(())
}
}
/// Trait for language implementors to use to generate glue code between native
/// WebAssembly signatures and interface types signatures.
///
/// This is used as an implementation detail in interpreting the ABI between
/// interface types and wasm types. Eventually this will be driven by interface
/// types adapters themselves, but for now the ABI of a function dictates what
/// instructions are fed in.
///
/// Types implementing `Bindgen` are incrementally fed `Instruction` values to
/// generate code for. Instructions operate like a stack machine where each
/// instruction has a list of inputs and a list of outputs (provided by the
/// `emit` function).
pub trait Bindgen {
/// The intermediate type for fragments of code for this type.
///
/// For most languages `String` is a suitable intermediate type.
type Operand;
/// Emit code to implement the given instruction.
///
/// Each operand is given in `operands` and can be popped off if ownership
/// is required. It's guaranteed that `operands` has the appropriate length
/// for the `inst` given, as specified with [`Instruction`].
///
/// Each result variable should be pushed onto `results`. This function must
/// push the appropriate number of results or binding generation will panic.
fn emit(
&mut self,
inst: &Instruction<'_>,
operands: &mut Vec<Self::Operand>,
results: &mut Vec<Self::Operand>,
);
/// Allocates temporary space in linear memory indexed by `slot` with enough
/// space to store `ty`.
///
/// This is called when calling some wasm functions where a return pointer
/// is needed.
fn allocate_space(&mut self, slot: usize, ty: &NamedType);
/// Enters a new block of code to generate code for.
///
/// This is currently exclusively used for constructing variants. When a
/// variant is constructed a block here will be pushed for each case of a
/// variant, generating the code necessary to translate a variant case.
///
/// Blocks are completed with `finish_block` below. It's expected that `emit`
/// will always push code (if necessary) into the "current block", which is
/// updated by calling this method and `finish_block` below.
fn push_block(&mut self);
/// Indicates to the code generator that a block is completed, and the
/// `operand` specified was the resulting value of the block.
///
/// This method will be used to compute the value of each arm of lifting a
/// variant. The `operand` will be `None` if the variant case didn't
/// actually have any type associated with it. Otherwise it will be `Some`
/// as the last value remaining on the stack representing the value
/// associated with a variant's `case`.
///
/// It's expected that this will resume code generation in the previous
/// block before `push_block` was called. This must also save the results
/// of the current block internally for instructions like `ResultLift` to
/// use later.
fn finish_block(&mut self, operand: Option<Self::Operand>);
}
impl InterfaceFunc {
/// Get the WebAssembly type signature for this interface function
///
/// The first entry returned is the list of parameters and the second entry
/// is the list of results for the wasm function signature.
pub fn wasm_signature(&self) -> (Vec<WasmType>, Vec<WasmType>) {
assert_eq!(self.abi, Abi::Preview1);
let mut params = Vec::new();
let mut results = Vec::new();
for param in self.params.iter() {
match &**param.tref.type_() {
Type::Builtin(BuiltinType::S8)
| Type::Builtin(BuiltinType::U8 { .. })
| Type::Builtin(BuiltinType::S16)
| Type::Builtin(BuiltinType::U16)
| Type::Builtin(BuiltinType::S32)
| Type::Builtin(BuiltinType::U32 { .. })
| Type::Builtin(BuiltinType::Char)
| Type::Pointer(_)
| Type::ConstPointer(_)
| Type::Handle(_)
| Type::Variant(_) => params.push(WasmType::I32),
Type::Record(r) => match r.bitflags_repr() {
Some(repr) => params.push(WasmType::from(repr)),
None => params.push(WasmType::I32),
},
Type::Builtin(BuiltinType::S64) | Type::Builtin(BuiltinType::U64) => {
params.push(WasmType::I64)
}
Type::Builtin(BuiltinType::F32) => params.push(WasmType::F32),
Type::Builtin(BuiltinType::F64) => params.push(WasmType::F64),
Type::List(_) => {
params.push(WasmType::I32);
params.push(WasmType::I32);
}
}
}
for param in self.results.iter() {
match &**param.tref.type_() {
Type::Builtin(BuiltinType::S8)
| Type::Builtin(BuiltinType::U8 { .. })
| Type::Builtin(BuiltinType::S16)
| Type::Builtin(BuiltinType::U16)
| Type::Builtin(BuiltinType::S32)
| Type::Builtin(BuiltinType::U32 { .. })
| Type::Builtin(BuiltinType::Char)
| Type::Pointer(_)
| Type::ConstPointer(_)
| Type::Handle(_) => results.push(WasmType::I32),
Type::Builtin(BuiltinType::S64) | Type::Builtin(BuiltinType::U64) => {
results.push(WasmType::I64)
}
Type::Builtin(BuiltinType::F32) => results.push(WasmType::F32),
Type::Builtin(BuiltinType::F64) => results.push(WasmType::F64),
Type::Record(r) => match r.bitflags_repr() {
Some(repr) => results.push(WasmType::from(repr)),
None => unreachable!(),
},
Type::List(_) => unreachable!(),
Type::Variant(v) => {
results.push(match v.tag_repr {
IntRepr::U64 => WasmType::I64,
IntRepr::U32 | IntRepr::U16 | IntRepr::U8 => WasmType::I32,
});
if v.is_enum() {
continue;
}
// return pointer
if let Some(ty) = &v.cases[0].tref {
match &**ty.type_() {
Type::Record(r) if r.is_tuple() => {
for _ in 0..r.members.len() {
params.push(WasmType::I32);
}
}
_ => params.push(WasmType::I32),
}
}
}
}
}
(params, results)
}
/// Generates an abstract sequence of instructions which represents this
/// function being adapted as an imported function.
///
/// The instructions here, when executed, will emulate a language with
/// interface types calling the concrete wasm implementation. The parameters
/// for the returned instruction sequence are the language's own
/// interface-types parameters. One instruction in the instruction stream
/// will be a `Call` which represents calling the actual raw wasm function
/// signature.
///
/// This function is useful, for example, if you're building a language
/// generator for WASI bindings. This will document how to translate
/// language-specific values into the wasm types to call a WASI function,
/// and it will also automatically convert the results of the WASI function
/// back to a language-specific value.
pub fn call_wasm(&self, module: &Id, bindgen: &mut impl Bindgen) {
assert_eq!(self.abi, Abi::Preview1);
Generator {
bindgen,
operands: vec![],
results: vec![],
stack: vec![],
}
.call_wasm(module, self);
}
/// This is the dual of [`InterfaceFunc::call_wasm`], except that instead of
/// calling a wasm signature it generates code to come from a wasm signature
/// and call an interface types signature.
pub fn call_interface(&self, module: &Id, bindgen: &mut impl Bindgen) {
assert_eq!(self.abi, Abi::Preview1);
Generator {
bindgen,
operands: vec![],
results: vec![],
stack: vec![],
}
.call_interface(module, self);
}
}
struct Generator<'a, B: Bindgen> {
bindgen: &'a mut B,
operands: Vec<B::Operand>,
results: Vec<B::Operand>,
stack: Vec<B::Operand>,
}
impl<B: Bindgen> Generator<'_, B> {
fn call_wasm(&mut self, module: &Id, func: &InterfaceFunc) {
// Translate all parameters which are interface values by lowering them
// to their wasm types.
for (nth, param) in func.params.iter().enumerate() {
self.emit(&Instruction::GetArg { nth });
self.lower(¶m.tref, None);
}
// If necessary for our ABI, insert return pointers for any returned
// values through a result.
assert!(func.results.len() < 2);
if let Some(result) = func.results.get(0) {
self.prep_return_pointer(&result.tref.type_());
}
let (params, results) = func.wasm_signature();
self.emit(&Instruction::CallWasm {
module: module.as_str(),
name: func.name.as_str(),
params: ¶ms,
results: &results,
});
// Lift the return value if one is present.
if let Some(result) = func.results.get(0) {
self.lift(&result.tref, true);
}
self.emit(&Instruction::Return {
amt: func.results.len(),
});
}
fn call_interface(&mut self, module: &Id, func: &InterfaceFunc) {
// Lift all wasm parameters into interface types first.
//
// Note that consuming arguments is somewhat janky right now by manually
// giving lists a second argument for their length. In the future we'll
// probably want to refactor the `lift` function to internally know how
// to consume arguments.
let mut nth = 0;
for param in func.params.iter() {
self.emit(&Instruction::GetArg { nth });
nth += 1;
if let Type::List(_) = &**param.tref.type_() {
self.emit(&Instruction::GetArg { nth });
nth += 1;
}
self.lift(¶m.tref, false);
}
self.emit(&Instruction::CallInterface {
module: module.as_str(),
func,
});
// Like above the current ABI only has at most one result, so lower it
// here if necessary.
if let Some(result) = func.results.get(0) {
self.lower(&result.tref, Some(&mut nth));
}
let (_params, results) = func.wasm_signature();
self.emit(&Instruction::Return { amt: results.len() });
}
fn emit(&mut self, inst: &Instruction<'_>) {
self.operands.clear();
self.results.clear();
let operands_len = inst.operands_len();
assert!(
self.stack.len() >= operands_len,
"not enough operands on stack for {:?}",
inst
);
self.operands
.extend(self.stack.drain((self.stack.len() - operands_len)..));
self.results.reserve(inst.results_len());
self.bindgen
.emit(inst, &mut self.operands, &mut self.results);
assert_eq!(
self.results.len(),
inst.results_len(),
"{:?} expected {} results, got {}",
inst,
inst.results_len(),
self.results.len()
);
self.stack.extend(self.results.drain(..));
}
fn lower(&mut self, ty: &TypeRef, retptr: Option<&mut usize>) {
use Instruction::*;
match &**ty.type_() {
Type::Builtin(BuiltinType::S8) => self.emit(&I32FromS8),
Type::Builtin(BuiltinType::U8 { lang_c_char: true }) => self.emit(&I32FromChar8),
Type::Builtin(BuiltinType::U8 { lang_c_char: false }) => self.emit(&I32FromU8),
Type::Builtin(BuiltinType::S16) => self.emit(&I32FromS16),
Type::Builtin(BuiltinType::U16) => self.emit(&I32FromU16),
Type::Builtin(BuiltinType::S32) => self.emit(&I32FromS32),
Type::Builtin(BuiltinType::U32 {
lang_ptr_size: true,
}) => self.emit(&I32FromUsize),
Type::Builtin(BuiltinType::U32 {
lang_ptr_size: false,
}) => self.emit(&I32FromU32),
Type::Builtin(BuiltinType::S64) => self.emit(&I64FromS64),
Type::Builtin(BuiltinType::U64) => self.emit(&I64FromU64),
Type::Builtin(BuiltinType::Char) => self.emit(&I32FromChar),
Type::Pointer(_) => self.emit(&I32FromPointer),
Type::ConstPointer(_) => self.emit(&I32FromConstPointer),
Type::Handle(_) => self.emit(&I32FromHandle {
ty: match ty {
TypeRef::Name(ty) => ty,
_ => unreachable!(),
},
}),
Type::Record(r) => {
let ty = match ty {
TypeRef::Name(ty) => ty,
_ => unreachable!(),
};
match r.bitflags_repr() {
Some(IntRepr::U64) => self.emit(&I64FromBitflags { ty }),
Some(_) => self.emit(&I32FromBitflags { ty }),
None => self.emit(&AddrOf),
}
}
Type::Variant(v) => {
// Enum-like variants are simply lowered to their discriminant.
if v.is_enum() {
return self.emit(&EnumLower {
ty: match ty {
TypeRef::Name(n) => n,
_ => unreachable!(),
},
});
}
// If this variant is in the return position then it's special,
// otherwise it's an argument and we just pass the address.
let retptr = match retptr {
Some(ptr) => ptr,
None => return self.emit(&AddrOf),
};
// For the return position we emit some blocks to lower the
// ok/err payloads which means that in the ok branch we're
// storing to out-params and in the err branch we're simply
// lowering the error enum.
//
// Note that this is all very specific to the current WASI ABI.
let (ok, err) = v.as_expected().unwrap();
self.bindgen.push_block();
if let Some(ok) = ok {
self.emit(&VariantPayload);
let store = |me: &mut Self, ty: &TypeRef, n| {
me.emit(&GetArg { nth: *retptr + n });
match ty {
TypeRef::Name(ty) => me.emit(&Store { ty }),
_ => unreachable!(),
}
};
match &**ok.type_() {
Type::Record(r) if r.is_tuple() => {
self.emit(&TupleLower {
amt: r.members.len(),
});
// Note that `rev()` is used here due to the order
// that tuples are pushed onto the stack and how we
// consume the last item first from the stack.
for (i, member) in r.members.iter().enumerate().rev() {
store(self, &member.tref, i);
}
}
_ => store(self, ok, 0),
}
};
self.bindgen.finish_block(None);
self.bindgen.push_block();
let err_expr = if let Some(ty) = err {
self.emit(&VariantPayload);
self.lower(ty, None);
Some(self.stack.pop().unwrap())
} else {
None
};
self.bindgen.finish_block(err_expr);
self.emit(&ResultLower { ok, err });
}
Type::Builtin(BuiltinType::F32) => self.emit(&F32FromIf32),
Type::Builtin(BuiltinType::F64) => self.emit(&F64FromIf64),
Type::List(_) => self.emit(&ListPointerLength),
}
}
fn prep_return_pointer(&mut self, ty: &Type) {
// Return pointers are only needed for `Result<T, _>`...
let variant = match ty {
Type::Variant(v) => v,
_ => return,
};
// ... and only if `T` is actually present in `Result<T, _>`
let ok = match &variant.cases[0].tref {
Some(t) => t,
None => return,
};
// Tuples have each individual item in a separate return pointer while
// all other types go through a singular return pointer.
let mut n = 0;
let mut prep = |ty: &TypeRef| {
match ty {
TypeRef::Name(ty) => self.bindgen.allocate_space(n, ty),
_ => unreachable!(),
}
self.emit(&Instruction::ReturnPointerGet { n });
n += 1;
};
match &**ok.type_() {
Type::Record(r) if r.is_tuple() => {
for member in r.members.iter() {
prep(&member.tref);
}
}
_ => prep(ok),
}
}
// Note that in general everything in this function is the opposite of the
// `lower` function above. This is intentional and should be kept this way!
fn lift(&mut self, ty: &TypeRef, is_return: bool) {
use Instruction::*;
match &**ty.type_() {
Type::Builtin(BuiltinType::S8) => self.emit(&S8FromI32),
Type::Builtin(BuiltinType::U8 { lang_c_char: true }) => self.emit(&Char8FromI32),
Type::Builtin(BuiltinType::U8 { lang_c_char: false }) => self.emit(&U8FromI32),
Type::Builtin(BuiltinType::S16) => self.emit(&S16FromI32),
Type::Builtin(BuiltinType::U16) => self.emit(&U16FromI32),
Type::Builtin(BuiltinType::S32) => self.emit(&S32FromI32),
Type::Builtin(BuiltinType::U32 {
lang_ptr_size: true,
}) => self.emit(&UsizeFromI32),
Type::Builtin(BuiltinType::U32 {
lang_ptr_size: false,
}) => self.emit(&U32FromI32),
Type::Builtin(BuiltinType::S64) => self.emit(&S64FromI64),
Type::Builtin(BuiltinType::U64) => self.emit(&U64FromI64),
Type::Builtin(BuiltinType::Char) => self.emit(&CharFromI32),
Type::Builtin(BuiltinType::F32) => self.emit(&If32FromF32),
Type::Builtin(BuiltinType::F64) => self.emit(&If64FromF64),
Type::Pointer(ty) => self.emit(&PointerFromI32 { ty }),
Type::ConstPointer(ty) => self.emit(&ConstPointerFromI32 { ty }),
Type::Handle(_) => self.emit(&HandleFromI32 {
ty: match ty {
TypeRef::Name(ty) => ty,
_ => unreachable!(),
},
}),
Type::Variant(v) => {
if v.is_enum() {
return self.emit(&EnumLift {
ty: match ty {
TypeRef::Name(n) => n,
_ => unreachable!(),
},
});
} else if !is_return {
return self.emit(&Load {
ty: match ty {
TypeRef::Name(n) => n,
_ => unreachable!(),
},
});
}
let (ok, err) = v.as_expected().unwrap();
self.bindgen.push_block();
let ok_expr = if let Some(ok) = ok {
let mut n = 0;
let mut load = |ty: &TypeRef| {
self.emit(&ReturnPointerGet { n });
n += 1;
match ty {
TypeRef::Name(ty) => self.emit(&Load { ty }),
_ => unreachable!(),
}
};
match &**ok.type_() {
Type::Record(r) if r.is_tuple() => {
for member in r.members.iter() {
load(&member.tref);
}
self.emit(&TupleLift {
amt: r.members.len(),
});
}
_ => load(ok),
}
Some(self.stack.pop().unwrap())
} else {
None
};
self.bindgen.finish_block(ok_expr);
self.bindgen.push_block();
let err_expr = if let Some(ty) = err {
self.emit(&ReuseReturn);
self.lift(ty, false);
Some(self.stack.pop().unwrap())
} else {
None
};
self.bindgen.finish_block(err_expr);
self.emit(&ResultLift);
}
Type::Record(r) => {
let ty = match ty {
TypeRef::Name(ty) => ty,
_ => unreachable!(),
};
match r.bitflags_repr() {
Some(IntRepr::U64) => self.emit(&BitflagsFromI64 { ty }),
Some(_) => self.emit(&BitflagsFromI32 { ty }),
None => self.emit(&Load { ty }),
}
}
Type::List(ty) => self.emit(&ListFromPointerLength { ty }),
}
}
}