pub struct UInt<U, B> { /* private fields */ }
Expand description
UInt
is defined recursively, where B
is the least significant bit and U
is the rest
of the number. Conceptually, U
should be bound by the trait Unsigned
and B
should
be bound by the trait Bit
, but enforcing these bounds causes linear instead of
logrithmic scaling in some places, so they are left off for now. They may be enforced in
future.
In order to keep numbers unique, leading zeros are not allowed, so UInt<UTerm, B0>
is
forbidden.
Example
use typenum::{UInt, UTerm, B0, B1};
type U6 = UInt<UInt<UInt<UTerm, B1>, B1>, B0>;
Implementations
Trait Implementations
sourceimpl<U: Unsigned> Add<B1> for UInt<U, B1> where
U: Add<B1>,
Add1<U>: Unsigned,
impl<U: Unsigned> Add<B1> for UInt<U, B1> where
U: Add<B1>,
Add1<U>: Unsigned,
UInt<U, B1> + B1 = UInt<U + B1, B0>
sourceimpl<Ul: Unsigned, Ur: Unsigned> Add<UInt<Ur, B0>> for UInt<Ul, B0> where
Ul: Add<Ur>,
impl<Ul: Unsigned, Ur: Unsigned> Add<UInt<Ur, B0>> for UInt<Ul, B0> where
Ul: Add<Ur>,
UInt<Ul, B0> + UInt<Ur, B0> = UInt<Ul + Ur, B0>
sourceimpl<Ul: Unsigned, Ur: Unsigned> Add<UInt<Ur, B0>> for UInt<Ul, B1> where
Ul: Add<Ur>,
impl<Ul: Unsigned, Ur: Unsigned> Add<UInt<Ur, B0>> for UInt<Ul, B1> where
Ul: Add<Ur>,
UInt<Ul, B1> + UInt<Ur, B0> = UInt<Ul + Ur, B1>
sourceimpl<Ul: Unsigned, Ur: Unsigned> Add<UInt<Ur, B1>> for UInt<Ul, B0> where
Ul: Add<Ur>,
impl<Ul: Unsigned, Ur: Unsigned> Add<UInt<Ur, B1>> for UInt<Ul, B0> where
Ul: Add<Ur>,
UInt<Ul, B0> + UInt<Ur, B1> = UInt<Ul + Ur, B1>
sourceimpl<Ul: Unsigned, Ur: Unsigned> Add<UInt<Ur, B1>> for UInt<Ul, B1> where
Ul: Add<Ur>,
Sum<Ul, Ur>: Add<B1>,
impl<Ul: Unsigned, Ur: Unsigned> Add<UInt<Ur, B1>> for UInt<Ul, B1> where
Ul: Add<Ur>,
Sum<Ul, Ur>: Add<B1>,
UInt<Ul, B1> + UInt<Ur, B1> = UInt<(Ul + Ur) + B1, B0>
sourceimpl<Ul: Unsigned, Bl: Bit, Ur: Unsigned> BitAnd<Ur> for UInt<Ul, Bl> where
UInt<Ul, Bl>: PrivateAnd<Ur>,
PrivateAndOut<UInt<Ul, Bl>, Ur>: Trim,
impl<Ul: Unsigned, Bl: Bit, Ur: Unsigned> BitAnd<Ur> for UInt<Ul, Bl> where
UInt<Ul, Bl>: PrivateAnd<Ur>,
PrivateAndOut<UInt<Ul, Bl>, Ur>: Trim,
Anding unsigned integers.
We use our PrivateAnd
operator and then Trim
the output.
sourceimpl<Ul: Unsigned, Ur: Unsigned> BitOr<UInt<Ur, B0>> for UInt<Ul, B0> where
Ul: BitOr<Ur>,
impl<Ul: Unsigned, Ur: Unsigned> BitOr<UInt<Ur, B0>> for UInt<Ul, B0> where
Ul: BitOr<Ur>,
UInt<Ul, B0> | UInt<Ur, B0> = UInt<Ul | Ur, B0>
sourceimpl<Ul: Unsigned, Ur: Unsigned> BitOr<UInt<Ur, B0>> for UInt<Ul, B1> where
Ul: BitOr<Ur>,
impl<Ul: Unsigned, Ur: Unsigned> BitOr<UInt<Ur, B0>> for UInt<Ul, B1> where
Ul: BitOr<Ur>,
UInt<Ul, B1> | UInt<Ur, B0> = UInt<Ul | Ur, B1>
sourceimpl<Ul: Unsigned, Ur: Unsigned> BitOr<UInt<Ur, B1>> for UInt<Ul, B0> where
Ul: BitOr<Ur>,
impl<Ul: Unsigned, Ur: Unsigned> BitOr<UInt<Ur, B1>> for UInt<Ul, B0> where
Ul: BitOr<Ur>,
UInt<Ul, B0> | UInt<Ur, B1> = UInt<Ul | Ur, B1>
sourceimpl<Ul: Unsigned, Ur: Unsigned> BitOr<UInt<Ur, B1>> for UInt<Ul, B1> where
Ul: BitOr<Ur>,
impl<Ul: Unsigned, Ur: Unsigned> BitOr<UInt<Ur, B1>> for UInt<Ul, B1> where
Ul: BitOr<Ur>,
UInt<Ul, B1> | UInt<Ur, B1> = UInt<Ul | Ur, B1>
sourceimpl<Ul: Unsigned, Bl: Bit, Ur: Unsigned> BitXor<Ur> for UInt<Ul, Bl> where
UInt<Ul, Bl>: PrivateXor<Ur>,
PrivateXorOut<UInt<Ul, Bl>, Ur>: Trim,
impl<Ul: Unsigned, Bl: Bit, Ur: Unsigned> BitXor<Ur> for UInt<Ul, Bl> where
UInt<Ul, Bl>: PrivateXor<Ur>,
PrivateXorOut<UInt<Ul, Bl>, Ur>: Trim,
Xoring unsigned integers.
We use our PrivateXor
operator and then Trim
the output.
sourceimpl<Ul: Unsigned, Ur: Unsigned> Cmp<UInt<Ur, B0>> for UInt<Ul, B0> where
Ul: PrivateCmp<Ur, Equal>,
impl<Ul: Unsigned, Ur: Unsigned> Cmp<UInt<Ur, B0>> for UInt<Ul, B0> where
Ul: PrivateCmp<Ur, Equal>,
UInt<Ul, B0>
cmp with UInt<Ur, B0>
: SoFar
is Equal
sourceimpl<Ul: Unsigned, Ur: Unsigned> Cmp<UInt<Ur, B0>> for UInt<Ul, B1> where
Ul: PrivateCmp<Ur, Greater>,
impl<Ul: Unsigned, Ur: Unsigned> Cmp<UInt<Ur, B0>> for UInt<Ul, B1> where
Ul: PrivateCmp<Ur, Greater>,
UInt<Ul, B1>
cmp with UInt<Ur, B0>
: SoFar
is Greater
sourceimpl<Ul: Unsigned, Ur: Unsigned> Cmp<UInt<Ur, B1>> for UInt<Ul, B1> where
Ul: PrivateCmp<Ur, Equal>,
impl<Ul: Unsigned, Ur: Unsigned> Cmp<UInt<Ur, B1>> for UInt<Ul, B1> where
Ul: PrivateCmp<Ur, Equal>,
UInt<Ul, B1>
cmp with UInt<Ur, B1>
: SoFar
is Equal
sourceimpl<Ul: Unsigned, Ur: Unsigned> Cmp<UInt<Ur, B1>> for UInt<Ul, B0> where
Ul: PrivateCmp<Ur, Less>,
impl<Ul: Unsigned, Ur: Unsigned> Cmp<UInt<Ur, B1>> for UInt<Ul, B0> where
Ul: PrivateCmp<Ur, Less>,
UInt<Ul, B0>
cmp with UInt<Ur, B1>
: SoFar
is Less
sourceimpl<Ul: Unsigned, Bl: Bit, Ur: Unsigned, Br: Bit> Div<UInt<Ur, Br>> for UInt<Ul, Bl> where
UInt<Ul, Bl>: Len,
Length<UInt<Ul, Bl>>: Sub<B1>,
(): PrivateDiv<UInt<Ul, Bl>, UInt<Ur, Br>, U0, U0, Sub1<Length<UInt<Ul, Bl>>>>,
impl<Ul: Unsigned, Bl: Bit, Ur: Unsigned, Br: Bit> Div<UInt<Ur, Br>> for UInt<Ul, Bl> where
UInt<Ul, Bl>: Len,
Length<UInt<Ul, Bl>>: Sub<B1>,
(): PrivateDiv<UInt<Ul, Bl>, UInt<Ur, Br>, U0, U0, Sub1<Length<UInt<Ul, Bl>>>>,
sourceimpl<Xp, Yp> Gcd<UInt<Yp, B0>> for UInt<Xp, B0> where
Xp: Gcd<Yp>,
UInt<Xp, B0>: NonZero,
UInt<Yp, B0>: NonZero,
impl<Xp, Yp> Gcd<UInt<Yp, B0>> for UInt<Xp, B0> where
Xp: Gcd<Yp>,
UInt<Xp, B0>: NonZero,
UInt<Yp, B0>: NonZero,
gcd(x, y) = 2*gcd(x/2, y/2) if both x and y even
sourceimpl<Xp, Yp> Gcd<UInt<Yp, B0>> for UInt<Xp, B1> where
UInt<Xp, B1>: Gcd<Yp>,
UInt<Yp, B0>: NonZero,
impl<Xp, Yp> Gcd<UInt<Yp, B0>> for UInt<Xp, B1> where
UInt<Xp, B1>: Gcd<Yp>,
UInt<Yp, B0>: NonZero,
gcd(x, y) = gcd(x, y/2) if x odd and y even
sourceimpl<Xp, Yp> Gcd<UInt<Yp, B1>> for UInt<Xp, B0> where
Xp: Gcd<UInt<Yp, B1>>,
UInt<Xp, B0>: NonZero,
impl<Xp, Yp> Gcd<UInt<Yp, B1>> for UInt<Xp, B0> where
Xp: Gcd<UInt<Yp, B1>>,
UInt<Xp, B0>: NonZero,
gcd(x, y) = gcd(x/2, y) if x even and y odd
sourceimpl<Xp, Yp> Gcd<UInt<Yp, B1>> for UInt<Xp, B1> where
UInt<Xp, B1>: Max<UInt<Yp, B1>> + Min<UInt<Yp, B1>>,
UInt<Yp, B1>: Max<UInt<Xp, B1>> + Min<UInt<Xp, B1>>,
Maximum<UInt<Xp, B1>, UInt<Yp, B1>>: Sub<Minimum<UInt<Xp, B1>, UInt<Yp, B1>>>,
Diff<Maximum<UInt<Xp, B1>, UInt<Yp, B1>>, Minimum<UInt<Xp, B1>, UInt<Yp, B1>>>: Gcd<Minimum<UInt<Xp, B1>, UInt<Yp, B1>>>,
impl<Xp, Yp> Gcd<UInt<Yp, B1>> for UInt<Xp, B1> where
UInt<Xp, B1>: Max<UInt<Yp, B1>> + Min<UInt<Yp, B1>>,
UInt<Yp, B1>: Max<UInt<Xp, B1>> + Min<UInt<Xp, B1>>,
Maximum<UInt<Xp, B1>, UInt<Yp, B1>>: Sub<Minimum<UInt<Xp, B1>, UInt<Yp, B1>>>,
Diff<Maximum<UInt<Xp, B1>, UInt<Yp, B1>>, Minimum<UInt<Xp, B1>, UInt<Yp, B1>>>: Gcd<Minimum<UInt<Xp, B1>, UInt<Yp, B1>>>,
gcd(x, y) = gcd([max(x, y) - min(x, y)], min(x, y)) if both x and y odd
This will immediately invoke the case for x even and y odd because the difference of two odd numbers is an even number.
sourceimpl<Un, Bn, Ui, Bi> GetBit<UInt<Ui, Bi>> for UInt<Un, Bn> where
UInt<Ui, Bi>: Copy + Sub<B1>,
Un: GetBit<Sub1<UInt<Ui, Bi>>>,
impl<Un, Bn, Ui, Bi> GetBit<UInt<Ui, Bi>> for UInt<Un, Bn> where
UInt<Ui, Bi>: Copy + Sub<B1>,
Un: GetBit<Sub1<UInt<Ui, Bi>>>,
sourceimpl<U: Unsigned, B: Bit> Len for UInt<U, B> where
U: Len,
Length<U>: Add<B1>,
Add1<Length<U>>: Unsigned,
impl<U: Unsigned, B: Bit> Len for UInt<U, B> where
U: Len,
Length<U>: Add<B1>,
Add1<Length<U>>: Unsigned,
Length of a bit is 1
sourceimpl<U, B, Ur> Max<Ur> for UInt<U, B> where
U: Unsigned,
B: Bit,
Ur: Unsigned,
UInt<U, B>: Cmp<Ur> + PrivateMax<Ur, Compare<UInt<U, B>, Ur>>,
impl<U, B, Ur> Max<Ur> for UInt<U, B> where
U: Unsigned,
B: Bit,
Ur: Unsigned,
UInt<U, B>: Cmp<Ur> + PrivateMax<Ur, Compare<UInt<U, B>, Ur>>,
sourceimpl<U, B, Ur> Min<Ur> for UInt<U, B> where
U: Unsigned,
B: Bit,
Ur: Unsigned,
UInt<U, B>: Cmp<Ur> + PrivateMin<Ur, Compare<UInt<U, B>, Ur>>,
impl<U, B, Ur> Min<Ur> for UInt<U, B> where
U: Unsigned,
B: Bit,
Ur: Unsigned,
UInt<U, B>: Cmp<Ur> + PrivateMin<Ur, Compare<UInt<U, B>, Ur>>,
sourceimpl<Ul: Unsigned, B: Bit, Ur: Unsigned> Mul<UInt<Ur, B>> for UInt<Ul, B0> where
Ul: Mul<UInt<Ur, B>>,
impl<Ul: Unsigned, B: Bit, Ur: Unsigned> Mul<UInt<Ur, B>> for UInt<Ul, B0> where
Ul: Mul<UInt<Ur, B>>,
UInt<Ul, B0> * UInt<Ur, B> = UInt<(Ul * UInt<Ur, B>), B0>
sourceimpl<Ul: Unsigned, B: Bit, Ur: Unsigned> Mul<UInt<Ur, B>> for UInt<Ul, B1> where
Ul: Mul<UInt<Ur, B>>,
UInt<Prod<Ul, UInt<Ur, B>>, B0>: Add<UInt<Ur, B>>,
impl<Ul: Unsigned, B: Bit, Ur: Unsigned> Mul<UInt<Ur, B>> for UInt<Ul, B1> where
Ul: Mul<UInt<Ur, B>>,
UInt<Prod<Ul, UInt<Ur, B>>, B0>: Add<UInt<Ur, B>>,
UInt<Ul, B1> * UInt<Ur, B> = UInt<(Ul * UInt<Ur, B>), B0> + UInt<Ur, B>
sourceimpl<U: Ord, B: Ord> Ord for UInt<U, B>
impl<U: Ord, B: Ord> Ord for UInt<U, B>
sourceimpl<Ul: Unsigned, Bl: Bit, Ur: Unsigned, Br: Bit> PartialDiv<UInt<Ur, Br>> for UInt<Ul, Bl> where
UInt<Ul, Bl>: Div<UInt<Ur, Br>> + Rem<UInt<Ur, Br>, Output = U0>,
impl<Ul: Unsigned, Bl: Bit, Ur: Unsigned, Br: Bit> PartialDiv<UInt<Ur, Br>> for UInt<Ul, Bl> where
UInt<Ul, Bl>: Div<UInt<Ur, Br>> + Rem<UInt<Ur, Br>, Output = U0>,
sourceimpl<U: PartialOrd, B: PartialOrd> PartialOrd<UInt<U, B>> for UInt<U, B>
impl<U: PartialOrd, B: PartialOrd> PartialOrd<UInt<U, B>> for UInt<U, B>
sourcefn partial_cmp(&self, other: &UInt<U, B>) -> Option<Ordering>
fn partial_cmp(&self, other: &UInt<U, B>) -> Option<Ordering>
This method returns an ordering between self
and other
values if one exists. Read more
1.0.0 · sourcefn lt(&self, other: &Rhs) -> bool
fn lt(&self, other: &Rhs) -> bool
This method tests less than (for self
and other
) and is used by the <
operator. Read more
1.0.0 · sourcefn le(&self, other: &Rhs) -> bool
fn le(&self, other: &Rhs) -> bool
This method tests less than or equal to (for self
and other
) and is used by the <=
operator. Read more
sourceimpl<Ul: Unsigned, Bl: Bit, Ur: Unsigned, Br: Bit> Rem<UInt<Ur, Br>> for UInt<Ul, Bl> where
UInt<Ul, Bl>: Len,
Length<UInt<Ul, Bl>>: Sub<B1>,
(): PrivateDiv<UInt<Ul, Bl>, UInt<Ur, Br>, U0, U0, Sub1<Length<UInt<Ul, Bl>>>>,
impl<Ul: Unsigned, Bl: Bit, Ur: Unsigned, Br: Bit> Rem<UInt<Ur, Br>> for UInt<Ul, Bl> where
UInt<Ul, Bl>: Len,
Length<UInt<Ul, Bl>>: Sub<B1>,
(): PrivateDiv<UInt<Ul, Bl>, UInt<Ur, Br>, U0, U0, Sub1<Length<UInt<Ul, Bl>>>>,
sourceimpl<U: Unsigned, B: Bit> Shl<B0> for UInt<U, B>
impl<U: Unsigned, B: Bit> Shl<B0> for UInt<U, B>
Shifting left any unsigned by a zero bit: U << B0 = U
sourceimpl<U: Unsigned, B: Bit> Shl<B1> for UInt<U, B>
impl<U: Unsigned, B: Bit> Shl<B1> for UInt<U, B>
Shifting left a UInt
by a one bit: UInt<U, B> << B1 = UInt<UInt<U, B>, B0>
sourceimpl<U: Unsigned, B: Bit, Ur: Unsigned, Br: Bit> Shl<UInt<Ur, Br>> for UInt<U, B> where
UInt<Ur, Br>: Sub<B1>,
UInt<UInt<U, B>, B0>: Shl<Sub1<UInt<Ur, Br>>>,
impl<U: Unsigned, B: Bit, Ur: Unsigned, Br: Bit> Shl<UInt<Ur, Br>> for UInt<U, B> where
UInt<Ur, Br>: Sub<B1>,
UInt<UInt<U, B>, B0>: Shl<Sub1<UInt<Ur, Br>>>,
Shifting left UInt
by UInt
: X << Y
= UInt(X, B0) << (Y - 1)
sourceimpl<U: Unsigned, B: Bit> Shl<UTerm> for UInt<U, B>
impl<U: Unsigned, B: Bit> Shl<UTerm> for UInt<U, B>
Shifting left UInt
by UTerm
: UInt<U, B> << UTerm = UInt<U, B>
sourceimpl<U: Unsigned, B: Bit> Shr<B0> for UInt<U, B>
impl<U: Unsigned, B: Bit> Shr<B0> for UInt<U, B>
Shifting right any unsigned by a zero bit: U >> B0 = U
sourceimpl<U: Unsigned, B: Bit> Shr<B1> for UInt<U, B>
impl<U: Unsigned, B: Bit> Shr<B1> for UInt<U, B>
Shifting right a UInt
by a 1 bit: UInt<U, B> >> B1 = U
sourceimpl<U: Unsigned, B: Bit, Ur: Unsigned, Br: Bit> Shr<UInt<Ur, Br>> for UInt<U, B> where
UInt<Ur, Br>: Sub<B1>,
U: Shr<Sub1<UInt<Ur, Br>>>,
impl<U: Unsigned, B: Bit, Ur: Unsigned, Br: Bit> Shr<UInt<Ur, Br>> for UInt<U, B> where
UInt<Ur, Br>: Sub<B1>,
U: Shr<Sub1<UInt<Ur, Br>>>,
Shifting right UInt
by UInt
: UInt(U, B) >> Y
= U >> (Y - 1)
sourceimpl<U: Unsigned, B: Bit> Shr<UTerm> for UInt<U, B>
impl<U: Unsigned, B: Bit> Shr<UTerm> for UInt<U, B>
Shifting right UInt
by UTerm
: UInt<U, B> >> UTerm = UInt<U, B>
sourceimpl<U: Unsigned> Sub<B1> for UInt<U, B0> where
U: Sub<B1>,
Sub1<U>: Unsigned,
impl<U: Unsigned> Sub<B1> for UInt<U, B0> where
U: Sub<B1>,
Sub1<U>: Unsigned,
UInt<U, B0> - B1 = UInt<U - B1, B1>
sourceimpl<Ul: Unsigned, Bl: Bit, Ur: Unsigned> Sub<Ur> for UInt<Ul, Bl> where
UInt<Ul, Bl>: PrivateSub<Ur>,
PrivateSubOut<UInt<Ul, Bl>, Ur>: Trim,
impl<Ul: Unsigned, Bl: Bit, Ur: Unsigned> Sub<Ur> for UInt<Ul, Bl> where
UInt<Ul, Bl>: PrivateSub<Ur>,
PrivateSubOut<UInt<Ul, Bl>, Ur>: Trim,
Subtracting unsigned integers. We just do our PrivateSub
and then Trim
the output.
sourceimpl<U: Unsigned, B: Bit> Unsigned for UInt<U, B>
impl<U: Unsigned, B: Bit> Unsigned for UInt<U, B>
const U8: u8
const U16: u16
const U32: u32
const U64: u64
const USIZE: usize
const I8: i8
const I16: i16
const I32: i32
const I64: i64
const ISIZE: isize
fn to_u8() -> u8
fn to_u16() -> u16
fn to_u32() -> u32
fn to_u64() -> u64
fn to_usize() -> usize
fn to_i8() -> i8
fn to_i16() -> i16
fn to_i32() -> i32
fn to_i64() -> i64
fn to_isize() -> isize
impl<U: Copy, B: Copy> Copy for UInt<U, B>
impl<U: Eq, B: Eq> Eq for UInt<U, B>
impl<U: Unsigned, B: Bit> NonZero for UInt<U, B>
impl PowerOfTwo for UInt<UTerm, B1>
impl<U: Unsigned + PowerOfTwo> PowerOfTwo for UInt<U, B0>
impl<U, B> StructuralEq for UInt<U, B>
impl<U, B> StructuralPartialEq for UInt<U, B>
Auto Trait Implementations
impl<U, B> RefUnwindSafe for UInt<U, B> where
B: RefUnwindSafe,
U: RefUnwindSafe,
impl<U, B> Send for UInt<U, B> where
B: Send,
U: Send,
impl<U, B> Sync for UInt<U, B> where
B: Sync,
U: Sync,
impl<U, B> Unpin for UInt<U, B> where
B: Unpin,
U: Unpin,
impl<U, B> UnwindSafe for UInt<U, B> where
B: UnwindSafe,
U: UnwindSafe,
Blanket Implementations
sourceimpl<T> BorrowMut<T> for T where
T: ?Sized,
impl<T> BorrowMut<T> for T where
T: ?Sized,
const: unstable · sourcefn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Mutably borrows from an owned value. Read more
sourceimpl<X> Gcd<UTerm> for X where
X: Unsigned + NonZero,
impl<X> Gcd<UTerm> for X where
X: Unsigned + NonZero,
type Output = X
type Output = X
The greatest common divisor.
sourceimpl<N> Logarithm2 for N where
N: PrivateLogarithm2,
impl<N> Logarithm2 for N where
N: PrivateLogarithm2,
type Output = <N as PrivateLogarithm2>::Output
type Output = <N as PrivateLogarithm2>::Output
The result of the integer binary logarithm.
sourceimpl<N, I, B> SetBit<I, B> for N where
N: PrivateSetBit<I, B>,
<N as PrivateSetBit<I, B>>::Output: Trim,
impl<N, I, B> SetBit<I, B> for N where
N: PrivateSetBit<I, B>,
<N as PrivateSetBit<I, B>>::Output: Trim,
sourceimpl<N> SquareRoot for N where
N: PrivateSquareRoot,
impl<N> SquareRoot for N where
N: PrivateSquareRoot,
type Output = <N as PrivateSquareRoot>::Output
type Output = <N as PrivateSquareRoot>::Output
The result of the integer square root.